# Ultralytics YOLO 🚀, AGPL-3.0 license from multiprocessing.pool import ThreadPool from pathlib import Path import numpy as np import torch import torch.nn.functional as F from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import LOGGER, NUM_THREADS, ops from ultralytics.utils.checks import check_requirements from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou from ultralytics.utils.plotting import output_to_target, plot_images class SegmentationValidator(DetectionValidator): """ A class extending the DetectionValidator class for validation based on a segmentation model. Example: ```python from ultralytics.models.yolo.segment import SegmentationValidator args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml') validator = SegmentationValidator(args=args) validator() ``` """ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.plot_masks = None self.process = None self.args.task = 'segment' self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) def preprocess(self, batch): """Preprocesses batch by converting masks to float and sending to device.""" batch = super().preprocess(batch) batch['masks'] = batch['masks'].to(self.device).float() return batch def init_metrics(self, model): """Initialize metrics and select mask processing function based on save_json flag.""" super().init_metrics(model) self.plot_masks = [] if self.args.save_json: check_requirements('pycocotools>=2.0.6') self.process = ops.process_mask_upsample # more accurate else: self.process = ops.process_mask # faster def get_desc(self): """Return a formatted description of evaluation metrics.""" return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R', 'mAP50', 'mAP50-95)') def postprocess(self, preds): """Post-processes YOLO predictions and returns output detections with proto.""" regression_preds = preds[1][-1] p,final_reg = ops.non_max_suppression(preds[0], conf_thres=self.args.conf, iou_thres = self.args.iou, labels=self.lb, multi_label=True, agnostic=self.args.single_cls, max_det=self.args.max_det, regression_var=regression_preds, nc=self.nc) if len(preds[1])==3: proto = preds[1][-1] elif len(preds[1])==4: proto = preds[1][-2] else: proto = preds[1] return (p, proto),final_reg def update_metrics(self, preds, batch, final_reg): """Metrics.""" for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): idx = batch['batch_idx'] == si regression_targets = batch['regression_vars'][si] reg_shape = regression_targets.shape cls = batch['cls'][idx] bbox = batch['bboxes'][idx] nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions shape = batch['ori_shape'][si] correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init self.seen += 1 regression_errors = torch.ones((npr,reg_shape[1])) #print(nl,npr) if npr == 0: if nl: self.stats.append((correct_bboxes, correct_masks, *torch.zeros( (2, 0), device=self.device), cls.squeeze(-1),regression_errors)) if self.args.plots: self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) continue # for i in range(nl): # print(regression_targets[i].shape) # print(final_reg[i].shape) # print(regression_errors[i].shape) # regression_errors[i] = regression_targets[i] - final_reg[i].cpu().numpy() # Masks midx = [si] if self.args.overlap_mask else idx gt_masks = batch['masks'][midx] pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:]) # Predictions if self.args.single_cls: pred[:, 5] = 0 predn = pred.clone() ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, ratio_pad=batch['ratio_pad'][si]) # native-space pred # Evaluate if nl: height, width = batch['img'].shape[2:] tbox = ops.xywh2xyxy(bbox) * torch.tensor( (width, height, width, height), device=self.device) # target boxes ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, ratio_pad=batch['ratio_pad'][si]) # native-space labels labelsn = torch.cat((cls, tbox), 1) # native-space labels correct_bboxes = self._process_batch(predn, labelsn) # TODO: maybe remove these `self.` arguments as they already are member variable correct_masks = self._process_batch(predn, labelsn, pred_masks, gt_masks, overlap=self.args.overlap_mask, masks=True) if self.args.plots: self.confusion_matrix.process_batch(predn, labelsn) # Append correct_masks, correct_boxes, pconf, pcls, tcls self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1),regression_errors)) pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) if self.args.plots and self.batch_i < 3: self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot # Save if self.args.save_json: pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, ratio_pad=batch['ratio_pad'][si]) self.pred_to_json(predn, batch['im_file'][si], pred_masks) # if self.args.save_txt: # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') def finalize_metrics(self, *args, **kwargs): """Sets speed and confusion matrix for evaluation metrics.""" self.metrics.speed = self.speed self.metrics.confusion_matrix = self.confusion_matrix def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): """ Return correct prediction matrix Args: detections (array[N, 6]), x1, y1, x2, y2, conf, class labels (array[M, 5]), class, x1, y1, x2, y2 Returns: correct (array[N, 10]), for 10 IoU levels """ if masks: if overlap: nl = len(labels) index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) gt_masks = torch.where(gt_masks == index, 1.0, 0.0) if gt_masks.shape[1:] != pred_masks.shape[1:]: gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] gt_masks = gt_masks.gt_(0.5) iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) else: # boxes iou = box_iou(labels[:, 1:], detections[:, :4]) return self.match_predictions(detections[:, 5], labels[:, 0], iou) def plot_val_samples(self, batch, ni): """Plots validation samples with bounding box labels.""" plot_images(batch['img'], batch['batch_idx'], batch['cls'].squeeze(-1), batch['bboxes'], batch['masks'], paths=batch['im_file'], fname=self.save_dir / f'val_batch{ni}_labels.jpg', names=self.names, on_plot=self.on_plot) def plot_predictions(self, batch, preds, ni): """Plots batch predictions with masks and bounding boxes.""" plot_images( batch['img'], *output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, paths=batch['im_file'], fname=self.save_dir / f'val_batch{ni}_pred.jpg', names=self.names, on_plot=self.on_plot) # pred self.plot_masks.clear() def pred_to_json(self, predn, filename, pred_masks): """Save one JSON result.""" # Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} from pycocotools.mask import encode # noqa def single_encode(x): """Encode predicted masks as RLE and append results to jdict.""" rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] rle['counts'] = rle['counts'].decode('utf-8') return rle stem = Path(filename).stem image_id = int(stem) if stem.isnumeric() else stem box = ops.xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner pred_masks = np.transpose(pred_masks, (2, 0, 1)) with ThreadPool(NUM_THREADS) as pool: rles = pool.map(single_encode, pred_masks) for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): self.jdict.append({ 'image_id': image_id, 'category_id': self.class_map[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5), 'segmentation': rles[i]}) def eval_json(self, stats): """Return COCO-style object detection evaluation metrics.""" if self.args.save_json and self.is_coco and len(self.jdict): anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations pred_json = self.save_dir / 'predictions.json' # predictions LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements('pycocotools>=2.0.6') from pycocotools.coco import COCO # noqa from pycocotools.cocoeval import COCOeval # noqa for x in anno_json, pred_json: assert x.is_file(), f'{x} file not found' anno = COCO(str(anno_json)) # init annotations api pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): if self.is_coco: eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval eval.evaluate() eval.accumulate() eval.summarize() idx = i * 4 + 2 stats[self.metrics.keys[idx + 1]], stats[ self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 except Exception as e: LOGGER.warning(f'pycocotools unable to run: {e}') return stats