- .gitignore +1 -1
- README.md +24 -2
- YOLOv8_TO.ipynb +0 -0
- test.ipynb +0 -0
- utils/yolo_utils.py +244 -0
.gitignore
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# Created by https://www.toptal.com/developers/gitignore/api/python
|
2 |
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
3 |
|
4 |
-
datasets/
|
5 |
|
6 |
### Python ###
|
7 |
# Byte-compiled / optimized / DLL files
|
|
|
1 |
# Created by https://www.toptal.com/developers/gitignore/api/python
|
2 |
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
3 |
|
4 |
+
/datasets/
|
5 |
|
6 |
### Python ###
|
7 |
# Byte-compiled / optimized / DLL files
|
README.md
CHANGED
@@ -15,8 +15,16 @@ Brief description of what the project does and the problem it solves. Include a
|
|
15 |
## Reference
|
16 |
This code aims to reproduce the results presented in the research article:
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Installation
|
21 |
|
22 |
### Prerequisites
|
@@ -32,3 +40,17 @@ pip install -e .
|
|
32 |
## Datasets
|
33 |
Links to the dataset on HuggingFace:
|
34 |
- [YOLOv8-TO_Data](https://huggingface.co/datasets/tomrb/yolov8to_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
## Reference
|
16 |
This code aims to reproduce the results presented in the research article:
|
17 |
|
18 |
+
```bibtex
|
19 |
+
@misc{rochefortbeaudoin2024density,
|
20 |
+
title={From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures},
|
21 |
+
author={Thomas Rochefort-Beaudoin and Aurelian Vadean and Sofiane Achiche and Niels Aage},
|
22 |
+
year={2024},
|
23 |
+
eprint={2404.18763},
|
24 |
+
archivePrefix={arXiv},
|
25 |
+
primaryClass={cs.CV}
|
26 |
+
}
|
27 |
+
```
|
28 |
## Installation
|
29 |
|
30 |
### Prerequisites
|
|
|
40 |
## Datasets
|
41 |
Links to the dataset on HuggingFace:
|
42 |
- [YOLOv8-TO_Data](https://huggingface.co/datasets/tomrb/yolov8to_data)
|
43 |
+
|
44 |
+
The Huggingface dataset contains the following datasets (see paper for details):
|
45 |
+
- MMC
|
46 |
+
- MMC-random
|
47 |
+
- SIMP
|
48 |
+
- SIMP_5%
|
49 |
+
- OOD
|
50 |
+
|
51 |
+
|
52 |
+
If you want to use one of the linked datasets, please unzip it inside of the datasets folder. Training labels are provided for the MMC and MMC-random data. To train on the data, please update the data.yaml file with the correct path to the dataset.
|
53 |
+
```yaml
|
54 |
+
path: # dataset root dir
|
55 |
+
```
|
56 |
+
|
YOLOv8_TO.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
utils/yolo_utils.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class CustomTverskyLoss(nn.Module):
|
8 |
+
def __init__(self, alpha=0.1, beta=0.9, size_average=True):
|
9 |
+
super(CustomTverskyLoss, self).__init__()
|
10 |
+
self.alpha = alpha
|
11 |
+
self.beta = beta
|
12 |
+
self.size_average = size_average
|
13 |
+
|
14 |
+
def forward(self, inputs, targets, smooth=1):
|
15 |
+
# If your model contains a sigmoid or equivalent activation layer, comment this line
|
16 |
+
# inputs = F.sigmoid(inputs)
|
17 |
+
|
18 |
+
# Check if the input tensors are of expected shape
|
19 |
+
if inputs.shape != targets.shape:
|
20 |
+
raise ValueError("Shape mismatch: inputs and targets must have the same shape")
|
21 |
+
|
22 |
+
# Compute Tversky loss for each sample in the batch
|
23 |
+
tversky_loss_values = []
|
24 |
+
for input_sample, target_sample in zip(inputs, targets):
|
25 |
+
# Flatten tensors for each sample
|
26 |
+
input_sample = input_sample.view(-1)
|
27 |
+
target_sample = target_sample.view(-1)
|
28 |
+
|
29 |
+
# Calculate the true positives, false positives, and false negatives
|
30 |
+
true_positives = (input_sample * target_sample).sum()
|
31 |
+
false_positives = (input_sample * (1 - target_sample)).sum()
|
32 |
+
false_negatives = ((1 - input_sample) * target_sample).sum()
|
33 |
+
|
34 |
+
# Compute the Tversky index for each sample
|
35 |
+
tversky_index = (true_positives + smooth) / (true_positives + self.alpha * false_positives + self.beta * false_negatives + smooth)
|
36 |
+
|
37 |
+
tversky_loss_values.append(1 - tversky_index)
|
38 |
+
|
39 |
+
# Convert list of Tversky loss values to a tensor
|
40 |
+
tversky_loss_values = torch.stack(tversky_loss_values)
|
41 |
+
|
42 |
+
# If you want the average loss over the batch to be returned
|
43 |
+
if self.size_average:
|
44 |
+
return tversky_loss_values.mean()
|
45 |
+
else:
|
46 |
+
# If you want individual losses for each sample in the batch
|
47 |
+
return tversky_loss_values
|
48 |
+
|
49 |
+
class CustomDiceLoss(nn.Module):
|
50 |
+
def __init__(self, weight=None, size_average=True):
|
51 |
+
super(CustomDiceLoss, self).__init__()
|
52 |
+
self.size_average = size_average
|
53 |
+
def forward(self, inputs, targets, smooth=1):
|
54 |
+
|
55 |
+
# If your model contains a sigmoid or equivalent activation layer, comment this line
|
56 |
+
#inputs = F.sigmoid(inputs)
|
57 |
+
|
58 |
+
# Check if the input tensors are of expected shape
|
59 |
+
if inputs.shape != targets.shape:
|
60 |
+
raise ValueError("Shape mismatch: inputs and targets must have the same shape")
|
61 |
+
|
62 |
+
# Compute Dice loss for each sample in the batch
|
63 |
+
dice_loss_values = []
|
64 |
+
for input_sample, target_sample in zip(inputs, targets):
|
65 |
+
|
66 |
+
# Flatten tensors for each sample
|
67 |
+
input_sample = input_sample.view(-1)
|
68 |
+
target_sample = target_sample.view(-1)
|
69 |
+
|
70 |
+
intersection = (input_sample * target_sample).sum()
|
71 |
+
dice = (2. * intersection + smooth) / (input_sample.sum() + target_sample.sum() + smooth)
|
72 |
+
|
73 |
+
dice_loss_values.append(1 - dice)
|
74 |
+
|
75 |
+
# Convert list of Dice loss values to a tensor
|
76 |
+
dice_loss_values = torch.stack(dice_loss_values)
|
77 |
+
|
78 |
+
# If you want the average loss over the batch to be returned
|
79 |
+
if self.size_average:
|
80 |
+
return dice_loss_values.mean()
|
81 |
+
else:
|
82 |
+
# If you want individual losses for each sample in the batch
|
83 |
+
return dice_loss_values
|
84 |
+
|
85 |
+
def smooth_heaviside(phi, alpha, epsilon):
|
86 |
+
# Scale and shift phi for the sigmoid function
|
87 |
+
scaled_phi = (phi - alpha) / epsilon
|
88 |
+
|
89 |
+
# Apply the sigmoid function
|
90 |
+
H = torch.sigmoid(scaled_phi)
|
91 |
+
|
92 |
+
return H
|
93 |
+
def calc_Phi(variable, LSgrid):
|
94 |
+
device = variable.device # Get the device of the variable
|
95 |
+
|
96 |
+
x0 = variable[0]
|
97 |
+
y0 = variable[1]
|
98 |
+
L = variable[2]
|
99 |
+
t = variable[3] # Constant thickness
|
100 |
+
angle = variable[4]
|
101 |
+
|
102 |
+
# Rotation
|
103 |
+
st = torch.sin(angle)
|
104 |
+
ct = torch.cos(angle)
|
105 |
+
x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0)
|
106 |
+
y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0)
|
107 |
+
|
108 |
+
# Regularized hyperellipse equation
|
109 |
+
a = L / 2 # Semi-major axis
|
110 |
+
b = t / 2 # Constant semi-minor axis
|
111 |
+
small_constant = 1e-9 # To avoid division by zero
|
112 |
+
temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6)
|
113 |
+
|
114 |
+
# # Ensuring the hyperellipse shape
|
115 |
+
allPhi = 1 - (temp + small_constant)**(1/6)
|
116 |
+
|
117 |
+
# # Call Heaviside function with allPhi
|
118 |
+
alpha = torch.tensor(0.0, device=device, dtype=torch.float32)
|
119 |
+
epsilon = torch.tensor(0.001, device=device, dtype=torch.float32)
|
120 |
+
H_phi = smooth_heaviside(allPhi, alpha, epsilon)
|
121 |
+
return allPhi, H_phi
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
# utils.py
|
126 |
+
|
127 |
+
import torch
|
128 |
+
import numpy as np
|
129 |
+
from PIL import Image
|
130 |
+
import matplotlib.pyplot as plt
|
131 |
+
from matplotlib.colors import TwoSlopeNorm
|
132 |
+
|
133 |
+
def preprocess_image(image_path, threshold_value=0.9, upscale=False, upscale_factor=2.0):
|
134 |
+
image = Image.open(image_path).convert('L')
|
135 |
+
image = image.point(lambda x: 255 if x > threshold_value * 255 else 0, '1')
|
136 |
+
|
137 |
+
if upscale:
|
138 |
+
image = image.resize(
|
139 |
+
(int(image.width * upscale_factor), int(image.height * upscale_factor)),
|
140 |
+
resample=Image.BICUBIC
|
141 |
+
)
|
142 |
+
|
143 |
+
return image
|
144 |
+
|
145 |
+
def run_model(model, image, conf=0.05, iou=0.5, imgsz=640):
|
146 |
+
results = model(image, conf=conf, iou=iou, imgsz=imgsz)
|
147 |
+
return results
|
148 |
+
|
149 |
+
def save_results(results, filename='results.jpg'):
|
150 |
+
for r in results:
|
151 |
+
im_array = r.plot(boxes=True, labels=False, line_width=1)
|
152 |
+
im = Image.fromarray(im_array[..., ::-1])
|
153 |
+
im.save(filename)
|
154 |
+
|
155 |
+
def process_results(results, input_image):
|
156 |
+
diceloss = CustomDiceLoss()
|
157 |
+
tverskyloss = CustomTverskyLoss()
|
158 |
+
|
159 |
+
prediction_tensor = results[0].regression_preds.to('cpu').detach()
|
160 |
+
input_image_array = np.array(input_image.convert('L'))
|
161 |
+
input_image_array_tensor = torch.tensor(input_image_array) / 255.0
|
162 |
+
input_image_array_tensor = 1.0 - input_image_array_tensor
|
163 |
+
input_image_array_tensor = torch.flip(input_image_array_tensor, [0])
|
164 |
+
|
165 |
+
for r in results:
|
166 |
+
im_array = r.plot(boxes=True, labels=False, line_width=1)
|
167 |
+
seg_result = Image.fromarray(im_array[..., ::-1])
|
168 |
+
|
169 |
+
DH = input_image_array.shape[0] / min(input_image_array.shape[1], input_image_array.shape[0])
|
170 |
+
DW = input_image_array.shape[1] / min(input_image_array.shape[1], input_image_array.shape[0])
|
171 |
+
nelx = input_image_array.shape[1] - 1
|
172 |
+
nely = input_image_array.shape[0] - 1
|
173 |
+
|
174 |
+
x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1))
|
175 |
+
LSgrid = torch.stack((x.flatten(), y.flatten()), dim=0)
|
176 |
+
|
177 |
+
pred_bboxes = results[0].boxes.xyxyn.to('cpu').detach()
|
178 |
+
constant_tensor_02 = torch.full((pred_bboxes.shape[0],), 0.2)
|
179 |
+
constant_tensor_00 = torch.full((pred_bboxes.shape[0],), 0.001)
|
180 |
+
|
181 |
+
xmax = torch.stack([pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), constant_tensor_02], dim=1)
|
182 |
+
xmin = torch.stack([pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), constant_tensor_00], dim=1)
|
183 |
+
|
184 |
+
unnormalized_preds = prediction_tensor * (xmax - xmin) + xmin
|
185 |
+
|
186 |
+
x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2
|
187 |
+
y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2
|
188 |
+
|
189 |
+
L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 +
|
190 |
+
(unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2)
|
191 |
+
|
192 |
+
L = L + 1e-4
|
193 |
+
t_1 = unnormalized_preds[:, 4]
|
194 |
+
|
195 |
+
epsilon = 1e-10
|
196 |
+
y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon
|
197 |
+
x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon
|
198 |
+
theta = torch.atan2(y_diff, x_diff)
|
199 |
+
|
200 |
+
formatted_variables = torch.cat((x_center.unsqueeze(1),
|
201 |
+
y_center.unsqueeze(1),
|
202 |
+
L.unsqueeze(1),
|
203 |
+
t_1.unsqueeze(1),
|
204 |
+
theta.unsqueeze(1)), dim=1)
|
205 |
+
|
206 |
+
pred_Phi, pred_H = calc_Phi(formatted_variables.T, LSgrid)
|
207 |
+
|
208 |
+
sum_pred_H = torch.sum(pred_H.detach().cpu(), dim=1)
|
209 |
+
sum_pred_H[sum_pred_H > 1] = 1
|
210 |
+
|
211 |
+
final_H = np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F'))
|
212 |
+
|
213 |
+
dice_loss = diceloss(torch.tensor(final_H.copy()), input_image_array_tensor)
|
214 |
+
tversky_loss = tverskyloss(torch.tensor(final_H.copy()), input_image_array_tensor)
|
215 |
+
|
216 |
+
return input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss
|
217 |
+
|
218 |
+
def plot_results(input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss, filename='combined_plots.png'):
|
219 |
+
nelx = input_image_array_tensor.shape[1] - 1
|
220 |
+
nely = input_image_array_tensor.shape[0] - 1
|
221 |
+
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
|
222 |
+
|
223 |
+
axes[0, 0].imshow(input_image_array_tensor.squeeze(), origin='lower', cmap='gray_r')
|
224 |
+
axes[0, 0].set_title('Input Image')
|
225 |
+
axes[0, 0].axis('on')
|
226 |
+
|
227 |
+
axes[0, 1].imshow(seg_result)
|
228 |
+
axes[0, 1].set_title('Segmentation Result')
|
229 |
+
axes[0, 1].axis('off')
|
230 |
+
|
231 |
+
render_colors1 = ['yellow', 'g', 'r', 'c', 'm', 'y', 'black', 'orange', 'pink', 'cyan', 'slategrey', 'wheat', 'purple', 'mediumturquoise', 'darkviolet', 'orangered']
|
232 |
+
for i, color in zip(range(0, pred_Phi.shape[1]), render_colors1*100):
|
233 |
+
axes[1, 1].contourf(np.flipud(pred_Phi[:, i].numpy().reshape((nely+1, nelx+1), order='F')), [0, 1], colors=color)
|
234 |
+
axes[1, 1].set_title('Prediction contours')
|
235 |
+
axes[1, 1].set_aspect('equal')
|
236 |
+
|
237 |
+
axes[1, 0].imshow(np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F')), origin='lower', cmap='gray_r')
|
238 |
+
axes[1, 0].set_title('Prediction Projection')
|
239 |
+
|
240 |
+
plt.subplots_adjust(hspace=0.3, wspace=0.01)
|
241 |
+
|
242 |
+
plt.figtext(0.5, 0.05, f'Dice Loss: {dice_loss.item():.4f}', ha='center', fontsize=16)
|
243 |
+
|
244 |
+
fig.savefig(filename, dpi=600)
|