|
|
|
|
|
import os |
|
import re |
|
from pathlib import Path |
|
|
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr |
|
|
|
try: |
|
import mlflow |
|
|
|
assert not TESTS_RUNNING |
|
assert hasattr(mlflow, '__version__') |
|
assert SETTINGS['mlflow'] is True |
|
except (ImportError, AssertionError): |
|
mlflow = None |
|
|
|
|
|
def on_pretrain_routine_end(trainer): |
|
"""Logs training parameters to MLflow.""" |
|
global mlflow, run, experiment_name |
|
|
|
if os.environ.get('MLFLOW_TRACKING_URI') is None: |
|
mlflow = None |
|
|
|
if mlflow: |
|
mlflow_location = os.environ['MLFLOW_TRACKING_URI'] |
|
mlflow.set_tracking_uri(mlflow_location) |
|
|
|
experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8' |
|
run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name |
|
experiment = mlflow.get_experiment_by_name(experiment_name) |
|
if experiment is None: |
|
mlflow.create_experiment(experiment_name) |
|
mlflow.set_experiment(experiment_name) |
|
|
|
prefix = colorstr('MLFlow: ') |
|
try: |
|
run, active_run = mlflow, mlflow.active_run() |
|
if not active_run: |
|
active_run = mlflow.start_run(experiment_id=experiment.experiment_id, run_name=run_name) |
|
LOGGER.info(f'{prefix}Using run_id({active_run.info.run_id}) at {mlflow_location}') |
|
run.log_params(vars(trainer.model.args)) |
|
except Exception as err: |
|
LOGGER.error(f'{prefix}Failing init - {repr(err)}') |
|
LOGGER.warning(f'{prefix}Continuing without Mlflow') |
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
"""Logs training metrics to Mlflow.""" |
|
if mlflow: |
|
metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()} |
|
run.log_metrics(metrics=metrics_dict, step=trainer.epoch) |
|
|
|
|
|
def on_train_end(trainer): |
|
"""Called at end of train loop to log model artifact info.""" |
|
if mlflow: |
|
root_dir = Path(__file__).resolve().parents[3] |
|
run.log_artifact(trainer.last) |
|
run.log_artifact(trainer.best) |
|
run.pyfunc.log_model(artifact_path=experiment_name, |
|
code_path=[str(root_dir)], |
|
artifacts={'model_path': str(trainer.save_dir)}, |
|
python_model=run.pyfunc.PythonModel()) |
|
|
|
|
|
callbacks = { |
|
'on_pretrain_routine_end': on_pretrain_routine_end, |
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
'on_train_end': on_train_end} if mlflow else {} |
|
|