|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.utils.metrics import OKS_SIGMA |
|
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh |
|
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors |
|
|
|
from .metrics import bbox_iou |
|
from .tal import bbox2dist |
|
import numpy as np |
|
import sys |
|
|
|
|
|
def display_shape(input_item, prefix=""): |
|
|
|
if isinstance(input_item, (list, tuple)): |
|
for idx, item in enumerate(input_item): |
|
|
|
new_prefix = f"{prefix}[{idx}]" |
|
display_shape(item, new_prefix) |
|
|
|
elif isinstance(input_item, torch.Tensor): |
|
print(f"{prefix}: {input_item.shape}") |
|
else: |
|
print(f"Unsupported type {type(input_item)} at {prefix}") |
|
|
|
|
|
def Heaviside(phi, alpha, epsilon): |
|
device = phi.device |
|
|
|
|
|
H_positive = torch.ones_like(phi, device=device) |
|
H_negative = alpha * torch.ones_like(phi, device=device) |
|
|
|
|
|
default = 3 * (1 - alpha) / 4 * (phi / epsilon - phi**3 / (3 * epsilon**3)) + (1 + alpha) / 2 |
|
|
|
|
|
H = torch.where(phi > epsilon, H_positive, torch.where(phi < -epsilon, H_negative, default)) |
|
|
|
return H |
|
def smooth_heaviside(phi, alpha, epsilon): |
|
|
|
scaled_phi = (phi - alpha) / epsilon |
|
|
|
|
|
H = torch.sigmoid(scaled_phi) |
|
|
|
return H |
|
|
|
def calc_Phi(variable, LSgrid): |
|
device = variable.device |
|
|
|
x0 = variable[0] |
|
y0 = variable[1] |
|
L = variable[2] |
|
t = variable[3] |
|
angle = variable[4] |
|
|
|
|
|
st = torch.sin(angle) |
|
ct = torch.cos(angle) |
|
x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0) |
|
y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0) |
|
|
|
|
|
a = L / 2 |
|
b = t / 2 |
|
small_constant = 1e-9 |
|
temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6) |
|
|
|
|
|
allPhi = 1 - (temp + small_constant)**(1/6) |
|
|
|
|
|
alpha = torch.tensor(0.0, device=device, dtype=torch.float32) |
|
epsilon = torch.tensor(0.001, device=device, dtype=torch.float32) |
|
H_phi = smooth_heaviside(allPhi, alpha, epsilon) |
|
return allPhi, H_phi |
|
|
|
|
|
class CustomDiceLoss(nn.Module): |
|
def __init__(self, weight=None, size_average=True): |
|
super(CustomDiceLoss, self).__init__() |
|
self.size_average = size_average |
|
|
|
def forward(self, inputs, targets, smooth=1): |
|
|
|
|
|
|
|
|
|
|
|
if inputs.shape != targets.shape: |
|
raise ValueError("Shape mismatch: inputs and targets must have the same shape") |
|
|
|
|
|
inputs_flat = inputs.view(inputs.shape[0], -1) |
|
targets_flat = targets.view(targets.shape[0], -1) |
|
|
|
|
|
intersection = (inputs_flat * targets_flat).sum(1) |
|
union = inputs_flat.sum(1) + targets_flat.sum(1) |
|
|
|
|
|
dice = (2. * intersection + smooth) / (union + smooth) |
|
dice_loss = 1 - dice |
|
|
|
|
|
if self.size_average: |
|
return dice_loss.mean() |
|
else: |
|
|
|
return dice_loss |
|
|
|
class CustomTverskyLoss(nn.Module): |
|
def __init__(self, alpha, beta, size_average=True): |
|
super(CustomTverskyLoss, self).__init__() |
|
self.alpha = alpha |
|
self.beta = beta |
|
self.size_average = size_average |
|
|
|
def forward(self, inputs, targets, smooth=1): |
|
|
|
|
|
|
|
|
|
|
|
if inputs.shape != targets.shape: |
|
raise ValueError("Shape mismatch: inputs and targets must have the same shape") |
|
|
|
|
|
inputs_flat = inputs.view(inputs.shape[0], -1) |
|
targets_flat = targets.view(targets.shape[0], -1) |
|
|
|
|
|
true_pos = (inputs_flat * targets_flat).sum(1) |
|
false_neg = ((1 - inputs_flat) * targets_flat).sum(1) |
|
false_pos = (inputs_flat * (1 - targets_flat)).sum(1) |
|
|
|
|
|
tversky_index = (true_pos + smooth) / (true_pos + self.alpha * false_neg + self.beta * false_pos + smooth) |
|
tversky_loss = 1 - tversky_index |
|
|
|
|
|
if self.size_average: |
|
return tversky_loss.mean() |
|
else: |
|
|
|
return tversky_loss |
|
|
|
|
|
class VarifocalLoss(nn.Module): |
|
"""Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367.""" |
|
|
|
def __init__(self): |
|
"""Initialize the VarifocalLoss class.""" |
|
super().__init__() |
|
|
|
@staticmethod |
|
def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0): |
|
"""Computes varfocal loss.""" |
|
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label |
|
with torch.cuda.amp.autocast(enabled=False): |
|
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') * |
|
weight).mean(1).sum() |
|
return loss |
|
|
|
|
|
class FocalLoss(nn.Module): |
|
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" |
|
|
|
def __init__(self, ): |
|
super().__init__() |
|
|
|
@staticmethod |
|
def forward(pred, label, gamma=1.5, alpha=0.25): |
|
"""Calculates and updates confusion matrix for object detection/classification tasks.""" |
|
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none') |
|
|
|
|
|
|
|
|
|
pred_prob = pred.sigmoid() |
|
p_t = label * pred_prob + (1 - label) * (1 - pred_prob) |
|
modulating_factor = (1.0 - p_t) ** gamma |
|
loss *= modulating_factor |
|
if alpha > 0: |
|
alpha_factor = label * alpha + (1 - label) * (1 - alpha) |
|
loss *= alpha_factor |
|
return loss.mean(1).sum() |
|
|
|
|
|
class BboxLoss(nn.Module): |
|
|
|
def __init__(self, reg_max, use_dfl=False): |
|
"""Initialize the BboxLoss module with regularization maximum and DFL settings.""" |
|
super().__init__() |
|
self.reg_max = reg_max |
|
self.use_dfl = use_dfl |
|
|
|
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): |
|
"""IoU loss.""" |
|
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) |
|
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) |
|
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum |
|
|
|
|
|
if self.use_dfl: |
|
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max) |
|
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight |
|
loss_dfl = loss_dfl.sum() / target_scores_sum |
|
else: |
|
loss_dfl = torch.tensor(0.0).to(pred_dist.device) |
|
|
|
return loss_iou, loss_dfl |
|
|
|
@staticmethod |
|
def _df_loss(pred_dist, target): |
|
"""Return sum of left and right DFL losses.""" |
|
|
|
tl = target.long() |
|
tr = tl + 1 |
|
wl = tr - target |
|
wr = 1 - wl |
|
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl + |
|
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True) |
|
|
|
|
|
class KeypointLoss(nn.Module): |
|
"""Criterion class for computing training losses.""" |
|
|
|
def __init__(self, sigmas) -> None: |
|
super().__init__() |
|
self.sigmas = sigmas |
|
|
|
def forward(self, pred_kpts, gt_kpts, kpt_mask, area): |
|
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" |
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2 |
|
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9) |
|
|
|
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 |
|
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean() |
|
|
|
|
|
class v8DetectionLoss: |
|
"""Criterion class for computing training losses.""" |
|
|
|
def __init__(self, model): |
|
|
|
device = next(model.parameters()).device |
|
h = model.args |
|
|
|
m = model.model[-1] |
|
self.bce = nn.BCEWithLogitsLoss(reduction='none') |
|
self.hyp = h |
|
self.stride = m.stride |
|
self.nc = m.nc |
|
self.no = m.no |
|
self.reg_max = m.reg_max |
|
self.device = device |
|
|
|
self.use_dfl = m.reg_max > 1 |
|
|
|
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) |
|
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device) |
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) |
|
|
|
def preprocess(self, targets, batch_size, scale_tensor): |
|
"""Preprocesses the target counts and matches with the input batch size to output a tensor.""" |
|
if targets.shape[0] == 0: |
|
out = torch.zeros(batch_size, 0, 5, device=self.device) |
|
else: |
|
i = targets[:, 0] |
|
_, counts = i.unique(return_counts=True) |
|
counts = counts.to(dtype=torch.int32) |
|
out = torch.zeros(batch_size, counts.max(), 5, device=self.device) |
|
for j in range(batch_size): |
|
matches = i == j |
|
n = matches.sum() |
|
if n: |
|
out[j, :n] = targets[matches, 1:] |
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) |
|
return out |
|
|
|
def bbox_decode(self, anchor_points, pred_dist): |
|
"""Decode predicted object bounding box coordinates from anchor points and distribution.""" |
|
if self.use_dfl: |
|
b, a, c = pred_dist.shape |
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) |
|
|
|
|
|
return dist2bbox(pred_dist, anchor_points, xywh=False) |
|
|
|
def __call__(self, preds, batch): |
|
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" |
|
loss = torch.zeros(3, device=self.device) |
|
feats = preds[1] if isinstance(preds, tuple) else preds |
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
|
|
dtype = pred_scores.dtype |
|
batch_size = pred_scores.shape[0] |
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] |
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) |
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) |
|
|
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner( |
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) |
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum |
|
|
|
|
|
if fg_mask.sum(): |
|
target_bboxes /= stride_tensor |
|
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, |
|
target_scores_sum, fg_mask) |
|
|
|
loss[0] *= self.hyp.box |
|
loss[1] *= self.hyp.cls |
|
loss[2] *= self.hyp.dfl |
|
|
|
return loss.sum() * batch_size, loss.detach() |
|
|
|
|
|
class v8SegmentationLoss(v8DetectionLoss): |
|
"""Criterion class for computing training losses.""" |
|
|
|
def __init__(self, model): |
|
super().__init__(model) |
|
self.nm = model.model[-1].nm |
|
try: |
|
self.overlap = model.args.overlap_mask |
|
except: |
|
self.overlap =False |
|
self.diceloss = CustomDiceLoss() |
|
|
|
|
|
|
|
def __call__(self, preds, batch): |
|
"""Calculate and return the loss for the YOLO model.""" |
|
loss = torch.zeros(5, device=self.device) |
|
if len(preds) ==3: |
|
feats, pred_masks, proto = preds |
|
elif len(preds) ==4: |
|
feats, pred_masks, proto, regression_tensor = preds |
|
|
|
|
|
else: |
|
feats, pred_masks, proto, regression_tensor = preds[1] |
|
batch_size, _, mask_h, mask_w = proto.shape |
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
pred_masks = pred_masks.permute(0, 2, 1).contiguous() |
|
|
|
dtype = pred_scores.dtype |
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] |
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
try: |
|
batch_idx = batch['batch_idx'].view(-1, 1) |
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) |
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
except RuntimeError as e: |
|
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n' |
|
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, " |
|
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a " |
|
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' " |
|
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e |
|
|
|
|
|
|
|
if 'regression_vars' in batch: |
|
max_objects = 300 |
|
padded_vars = [np.pad(item, ((0, max_objects - len(item)), (0, 0)), mode='constant') for item in batch['regression_vars']] |
|
regression_targets = torch.tensor(np.stack(padded_vars)).to(self.device).float() |
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) |
|
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner( |
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, regression_targets) |
|
else: |
|
|
|
regression_targets = torch.zeros((batch_size, 6, 300), device=self.device).float() |
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) |
|
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner( |
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, gt_regression= None) |
|
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
|
|
REG_LOSS = 'pixels' |
|
|
|
if REG_LOSS == 'direct': |
|
|
|
|
|
fg_regression_mask = fg_mask.unsqueeze(1).expand(-1, 6, -1) |
|
filtered_predictions = regression_tensor[fg_regression_mask] |
|
|
|
|
|
|
|
filtered_target = regression_scores[fg_regression_mask.permute(0,2,1).contiguous()] |
|
|
|
|
|
|
|
regression_loss = F.mse_loss(filtered_predictions, filtered_target,reduction="mean") |
|
|
|
if (REG_LOSS == 'pixels' or REG_LOSS=="level") and self.hyp.reg_gain > 0: |
|
|
|
|
|
|
|
DW = 1.0 |
|
DH = 1.0 |
|
|
|
nelx = int(200 * DW) |
|
nely = int(200 * DH) |
|
|
|
x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1)) |
|
LSgrid = torch.stack((y.flatten(), x.flatten()), dim=0) |
|
|
|
|
|
|
|
|
|
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum |
|
|
|
if fg_mask.sum(): |
|
|
|
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor, |
|
target_scores, target_scores_sum, fg_mask) |
|
|
|
masks = batch['masks'].to(self.device).float() |
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): |
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] |
|
|
|
for i in range(batch_size): |
|
if fg_mask[i].sum(): |
|
mask_idx = target_gt_idx[i][fg_mask[i]] |
|
if self.overlap: |
|
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0) |
|
else: |
|
gt_mask = masks[batch_idx.view(-1) == i][mask_idx] |
|
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] |
|
|
|
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1) |
|
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) |
|
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) |
|
test_bboxes = pred_bboxes*stride_tensor |
|
|
|
test_bboxes = test_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] |
|
|
|
test_bboxes = torch.clip(test_bboxes,0,1) |
|
|
|
filtered_regression = regression_tensor[i][:,fg_mask[i]] |
|
|
|
|
|
|
|
|
|
constant_tensor_02 = torch.full((test_bboxes.shape[0],), 0.2, device=self.device) |
|
constant_tensor_00 = torch.full((test_bboxes.shape[0],), 0.001, device=self.device) |
|
|
|
xmax = torch.stack([test_bboxes[:,2], test_bboxes[:,3], test_bboxes[:,2], test_bboxes[:,3], constant_tensor_02], dim=1).to(self.device) |
|
xmin = torch.stack([test_bboxes[:,0], test_bboxes[:,1], test_bboxes[:,0], test_bboxes[:,1], constant_tensor_00], dim=1).to(self.device) |
|
unnormalized_preds = filtered_regression.T * (xmax - xmin) + xmin |
|
|
|
|
|
x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2 |
|
y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2 |
|
|
|
L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 + |
|
(unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2) |
|
|
|
L = L+1e-4 |
|
t_1 = unnormalized_preds[:, 4] |
|
|
|
epsilon = 1e-10 |
|
y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon |
|
x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon |
|
theta = torch.atan2(y_diff, x_diff) |
|
formatted_variables = torch.cat((x_center.unsqueeze(1), |
|
y_center.unsqueeze(1), |
|
L.unsqueeze(1), |
|
t_1.unsqueeze(1), |
|
theta.unsqueeze(1)), dim=1) |
|
|
|
pxyxy = test_bboxes * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) |
|
|
|
if (REG_LOSS == "pixels" or REG_LOSS=="level") and self.hyp.reg_gain > 0: |
|
|
|
|
|
filtered_predictions = formatted_variables |
|
pred_phi , H_phi = calc_Phi(filtered_predictions.T,LSgrid.to(self.device)) |
|
if REG_LOSS == "level": |
|
pred_phi= torch.reshape(pred_phi,(nely+1,nelx+1,H_phi.shape[-1])) |
|
normalized = (pred_phi - pred_phi.min()) / (pred_phi.max() - pred_phi.min()) |
|
cropped_gt_mask = crop_mask(gt_mask,pxyxy) |
|
|
|
normalized = normalized.permute(2, 0, 1).unsqueeze(1) |
|
normalized = F.interpolate(normalized, size=cropped_gt_mask.shape[-2:], mode='nearest') |
|
|
|
level_loss = F.mse_loss(normalized.squeeze(1), cropped_gt_mask, reduction="mean") |
|
|
|
|
|
loss[4]+=level_loss |
|
|
|
else: |
|
H_phi= torch.reshape(H_phi,(nely+1,nelx+1,H_phi.shape[-1])) |
|
|
|
|
|
H_phi = H_phi.permute(2, 0, 1).unsqueeze(1) |
|
cropped_gt_mask = crop_mask(gt_mask,pxyxy) |
|
|
|
H_phi_resized = F.interpolate(H_phi, size=cropped_gt_mask.shape[-2:], mode='nearest') |
|
|
|
H_phi_resized = H_phi_resized.squeeze(1) |
|
|
|
|
|
dice = self.diceloss(H_phi_resized, cropped_gt_mask) |
|
|
|
|
|
loss[4]+= dice |
|
|
|
|
|
|
|
else: |
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() |
|
loss[4] += 0.0 |
|
|
|
else: |
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() |
|
loss[4] += 0.0 |
|
if REG_LOSS =='direct': |
|
loss[4] = regression_loss |
|
else: |
|
loss[4] *= self.hyp.reg_gain / batch_size |
|
|
|
loss[0] *= self.hyp.box |
|
loss[1] *= self.hyp.box / batch_size |
|
loss[2] *= self.hyp.cls |
|
loss[3] *= self.hyp.dfl |
|
return loss.sum() * batch_size, loss.detach() |
|
|
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): |
|
"""Mask loss for one image.""" |
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) |
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') |
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
|
def single_reg_loss(self, gt_mask, pred, xyxy, area): |
|
"""Mask loss for one image.""" |
|
loss = F.binary_cross_entropy_with_logits(pred, gt_mask, reduction='none') |
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
|
|
|
class v8PoseLoss(v8DetectionLoss): |
|
"""Criterion class for computing training losses.""" |
|
|
|
def __init__(self, model): |
|
super().__init__(model) |
|
self.kpt_shape = model.model[-1].kpt_shape |
|
self.bce_pose = nn.BCEWithLogitsLoss() |
|
is_pose = self.kpt_shape == [17, 3] |
|
nkpt = self.kpt_shape[0] |
|
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt |
|
self.keypoint_loss = KeypointLoss(sigmas=sigmas) |
|
|
|
def __call__(self, preds, batch): |
|
"""Calculate the total loss and detach it.""" |
|
loss = torch.zeros(5, device=self.device) |
|
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1] |
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() |
|
|
|
dtype = pred_scores.dtype |
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] |
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
batch_size = pred_scores.shape[0] |
|
batch_idx = batch['batch_idx'].view(-1, 1) |
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) |
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) |
|
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) |
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( |
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) |
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum |
|
|
|
|
|
if fg_mask.sum(): |
|
target_bboxes /= stride_tensor |
|
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, |
|
target_scores_sum, fg_mask) |
|
keypoints = batch['keypoints'].to(self.device).float().clone() |
|
keypoints[..., 0] *= imgsz[1] |
|
keypoints[..., 1] *= imgsz[0] |
|
for i in range(batch_size): |
|
if fg_mask[i].sum(): |
|
idx = target_gt_idx[i][fg_mask[i]] |
|
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] |
|
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]] |
|
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]] |
|
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True) |
|
pred_kpt = pred_kpts[i][fg_mask[i]] |
|
kpt_mask = gt_kpt[..., 2] != 0 |
|
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) |
|
|
|
if pred_kpt.shape[-1] == 3: |
|
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) |
|
|
|
loss[0] *= self.hyp.box |
|
loss[1] *= self.hyp.pose / batch_size |
|
loss[2] *= self.hyp.kobj / batch_size |
|
loss[3] *= self.hyp.cls |
|
loss[4] *= self.hyp.dfl |
|
|
|
return loss.sum() * batch_size, loss.detach() |
|
|
|
@staticmethod |
|
def kpts_decode(anchor_points, pred_kpts): |
|
"""Decodes predicted keypoints to image coordinates.""" |
|
y = pred_kpts.clone() |
|
y[..., :2] *= 2.0 |
|
y[..., 0] += anchor_points[:, [0]] - 0.5 |
|
y[..., 1] += anchor_points[:, [1]] - 0.5 |
|
return y |
|
|
|
|
|
class v8ClassificationLoss: |
|
"""Criterion class for computing training losses.""" |
|
|
|
def __call__(self, preds, batch): |
|
"""Compute the classification loss between predictions and true labels.""" |
|
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64 |
|
loss_items = loss.detach() |
|
return loss, loss_items |
|
|