File size: 35,958 Bytes
ab854b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
import re
import time
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from torch.nn import CosineSimilarity
from ultralytics.utils import LOGGER
class Profile(contextlib.ContextDecorator):
"""
YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.
Example:
```python
from ultralytics.utils.ops import Profile
with Profile() as dt:
pass # slow operation here
print(dt) # prints "Elapsed time is 9.5367431640625e-07 s"
```
"""
def __init__(self, t=0.0):
"""
Initialize the Profile class.
Args:
t (float): Initial time. Defaults to 0.0.
"""
self.t = t
self.cuda = torch.cuda.is_available()
def __enter__(self):
"""Start timing."""
self.start = self.time()
return self
def __exit__(self, type, value, traceback): # noqa
"""Stop timing."""
self.dt = self.time() - self.start # delta-time
self.t += self.dt # accumulate dt
def __str__(self):
return f'Elapsed time is {self.t} s'
def time(self):
"""Get current time."""
if self.cuda:
torch.cuda.synchronize()
return time.time()
def segment2box(segment, width=640, height=640):
"""
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).
Args:
segment (torch.Tensor): the segment label
width (int): the width of the image. Defaults to 640
height (int): The height of the image. Defaults to 640
Returns:
(np.ndarray): the minimum and maximum x and y values of the segment.
"""
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros(
4, dtype=segment.dtype) # xyxy
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
"""
Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
(img1_shape) to the shape of a different image (img0_shape).
Args:
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
img0_shape (tuple): the shape of the target image, in the format of (height, width).
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
calculated based on the size difference between the two images.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
Returns:
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
(img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
boxes[..., [0, 2]] -= pad[0] # x padding
boxes[..., [1, 3]] -= pad[1] # y padding
boxes[..., :4] /= gain
clip_boxes(boxes, img0_shape)
return boxes
def make_divisible(x, divisor):
"""
Returns the nearest number that is divisible by the given divisor.
Args:
x (int): The number to make divisible.
divisor (int | torch.Tensor): The divisor.
Returns:
(int): The nearest number divisible by the divisor.
"""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def downsample_masks(masks, scale_factor=1.0):
# Assuming masks are in (N, H, W) format
downsampled_masks = torch.nn.functional.interpolate(masks.float().unsqueeze(1), scale_factor=scale_factor, mode='bilinear', align_corners=False).squeeze(1)
return downsampled_masks.bool()
def custom_nms(iou_matrix, conf, iou_threshold):
conf_1d = conf.squeeze()
sorted_indices = conf_1d.argsort(descending=True)
keep = []
suppressed = torch.zeros(conf.size(0), dtype=torch.bool, device=conf.device) # Ensure suppressed is 1D
for idx in sorted_indices:
if suppressed[idx]:
continue # Skip if already suppressed
keep.append(idx.item()) # Add the current index to keep
# Suppress the masks with high IoU with the current mask, ensuring shapes match for in-place operation
suppressed |= (iou_matrix[idx] > iou_threshold).squeeze()
# Make sure the current mask is not suppressed by resetting its flag
suppressed[idx] = False
keep_indices = torch.tensor(keep, device=iou_matrix.device) # Convert kept indices to a tensor
return keep_indices
def non_max_suppression(
prediction,
mask_coef=None,
proto=None,
img_shape = None,
regression_var = None,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nc=0, # number of classes (optional)
max_time_img=60.0,
max_nms=30000,
max_wh=7680,
):
"""
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Args:
prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
containing the predicted boxes, classes, and masks. The tensor should be in the format
output by a model, such as YOLO.
conf_thres (float): The confidence threshold below which boxes will be filtered out.
Valid values are between 0.0 and 1.0.
iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
Valid values are between 0.0 and 1.0.
classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
agnostic (bool): If True, the model is agnostic to the number of classes, and all
classes will be considered as one.
multi_label (bool): If True, each box may have multiple labels.
labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
list contains the apriori labels for a given image. The list should be in the format
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
max_det (int): The maximum number of boxes to keep after NMS.
nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
max_wh (int): The maximum box width and height in pixels
Returns:
(List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
(x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
"""
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
device = prediction.device
mps = 'mps' in device.type # Apple MPS
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
prediction = prediction.cpu()
bs = prediction.shape[0] # batch size
nc = nc or (prediction.shape[1] - 4) # number of classes
nm = prediction.shape[1] - nc - 4
mi = 4 + nc # mask start index
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
# Settings
# min_wh = 2 # (pixels) minimum box width and height
time_limit = 0.5 + max_time_img * bs # seconds to quit after
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
t = time.time()
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
if regression_var is not None:
saved_reg_var = [torch.zeros((0, 6), device=prediction.device)] * bs
regression_var = regression_var.transpose(-1, -2)
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# confident_mask = mask_coefficient
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
lb = labels[xi]
v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Detections matrix nx6 (xyxy, conf, cls)
box, cls, mask = x.split((4, nc, nm), 1)
if multi_label:
i, j = torch.where(cls > conf_thres)
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
else: # best class only
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
if n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
# mask_coef = None
if mask_coef is not None:
ih, iw = img_shape
mask_coefficient = mask_coef[xi]
filtered_mask_coefficient = mask_coefficient[:, xc.squeeze()]
prototype = proto
c, mh, mw = prototype.shape[-3:] # CHW
masks = (filtered_mask_coefficient.T @ prototype.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
mask_coefficient = mask_coef[xi].detach()
filtered_mask_coefficient = mask_coefficient[:, xc.squeeze()].detach()
#filtered_mask_coefficient = filtered_mask_coefficient[:, kept_indices].detach()
#conf = conf[kept_indices].detach()
#masks = masks[kept_indices].detach()
downsampled_bboxes = boxes.clone().detach()
#downsampled_bboxes = boxes[kept_indices].clone().detach()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
masks.gt_(0.5)
# threshold masks:
#masks = (masks > 0.5).float()
downsampled_masks_bool = downsample_masks(masks, scale_factor=1.0).detach()
# Ensure masks are boolean and detach to avoid saving gradients
masks_bool = downsampled_masks_bool.detach() # Assuming downsampled_masks_bool is already defined
batch_size = 5 # Adjust based on your GPU memory and the size of masks_bool
num_masks = masks_bool.size(0)
intersections = []
unions = []
min_areas = [] # To store minimum areas for IoMin calculation
dices = [] # To store Dice Coefficients
for batch_start in range(0, num_masks, batch_size):
batch_end = min(batch_start + batch_size, num_masks)
masks_bool_batch = masks_bool[batch_start:batch_end]
# Compute intersection and union for the current batch
intersection_batch = (masks_bool_batch.unsqueeze(1) & masks_bool.unsqueeze(0)).float().sum(dim=(-1, -2))
union_batch = (masks_bool_batch.unsqueeze(1) | masks_bool.unsqueeze(0)).float().sum(dim=(-1, -2))
# Calculate areas for IoMin
area_batch = masks_bool_batch.float().sum(dim=(-1, -2)).unsqueeze(1) # Areas of masks in the current batch
area_all = masks_bool.float().sum(dim=(-1, -2)).unsqueeze(0) # Areas of all masks
min_area_batch = torch.min(area_batch, area_all) # Find the minimum area between each pair of masks
# Calculate Dice Coefficient for the current batch
dice_batch = (2 * intersection_batch) / (area_batch + area_all)
intersections.append(intersection_batch)
unions.append(union_batch)
min_areas.append(min_area_batch)
dices.append(dice_batch) # Append the calculated Dice Coefficients
# Concatenate the results from each batch
intersection = torch.cat(intersections, dim=0)
union = torch.cat(unions, dim=0)
min_area = torch.cat(min_areas, dim=0)
dice = torch.cat(dices, dim=0) # Concatenate all Dice Coefficients
# Compute IoMin by dividing intersection by the minimum area, handle division by zero
iou = intersection / union
iomin = intersection / min_area
iomin[min_area == 0] = 0 # Handle division by zero, if any
iou = iou.detach()
kept_indices = custom_nms(dice, conf, iou_thres)
# Map the IOU kept indices back to the original set
#original_indices_iou = kept_indices_cosine[kept_indices_iou].detach()
# Explicitly delete large unused tensors and call garbage collection to free up memory
del masks, downsampled_masks_bool, intersection, union, iou
import gc
gc.collect()
# Ensure CUDA cache is cleared, potentially freeing up unused memory
torch.cuda.empty_cache()
i = kept_indices
else:
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
i = i[:max_det] # limit detections
if regression_var is not None:
filtered_reg = regression_var[xi][xc[xi]]
saved_reg_var[xi] = filtered_reg[i]
output[xi] = x[i]
if mps:
output[xi] = output[xi].to(device)
if (time.time() - t) > time_limit:
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded
if regression_var is not None:
return output, saved_reg_var
else:
return output
def clip_boxes(boxes, shape):
"""
Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.
Args:
boxes (torch.Tensor): the bounding boxes to clip
shape (tuple): the shape of the image
"""
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def clip_coords(coords, shape):
"""
Clip line coordinates to the image boundaries.
Args:
coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns:
(None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries.
"""
if isinstance(coords, torch.Tensor): # faster individually
coords[..., 0].clamp_(0, shape[1]) # x
coords[..., 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x
coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y
def scale_image(masks, im0_shape, ratio_pad=None):
"""
Takes a mask, and resizes it to the original image size
Args:
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
im0_shape (tuple): the original image shape
ratio_pad (tuple): the ratio of the padding to the original image.
Returns:
masks (torch.Tensor): The masks that are being returned.
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
im1_shape = masks.shape
if im1_shape[:2] == im0_shape[:2]:
return masks
if ratio_pad is None: # calculate from im0_shape
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
if len(masks.shape) < 2:
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
masks = masks[top:bottom, left:right]
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
if len(masks.shape) == 2:
masks = masks[:, :, None]
return masks
def xyxy2xywh(x):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
"""
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def xywh2xyxy(x):
"""
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
dw = x[..., 2] / 2 # half-width
dh = x[..., 3] / 2 # half-height
y[..., 0] = x[..., 0] - dw # top left x
y[..., 1] = x[..., 1] - dh # top left y
y[..., 2] = x[..., 0] + dw # bottom right x
y[..., 3] = x[..., 1] + dh # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
"""
Convert normalized bounding box coordinates to pixel coordinates.
Args:
x (np.ndarray | torch.Tensor): The bounding box coordinates.
w (int): Width of the image. Defaults to 640
h (int): Height of the image. Defaults to 640
padw (int): Padding width. Defaults to 0
padh (int): Padding height. Defaults to 0
Returns:
y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
"""
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format.
x, y, width and height are normalized to image dimensions
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
eps (float): The minimum value of the box's width and height. Defaults to 0.0
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
"""
if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
return y
def xywh2ltwh(x):
"""
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
return y
def xyxy2ltwh(x):
"""
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def ltwh2xywh(x):
"""
Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
Args:
x (torch.Tensor): the input tensor
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] + x[..., 2] / 2 # center x
y[..., 1] = x[..., 1] + x[..., 3] / 2 # center y
return y
def xyxyxyxy2xywhr(corners):
"""
Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation].
Args:
corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).
Returns:
(numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
"""
is_numpy = isinstance(corners, np.ndarray)
atan2, sqrt = (np.arctan2, np.sqrt) if is_numpy else (torch.atan2, torch.sqrt)
x1, y1, x2, y2, x3, y3, x4, y4 = corners.T
cx = (x1 + x3) / 2
cy = (y1 + y3) / 2
dx21 = x2 - x1
dy21 = y2 - y1
w = sqrt(dx21 ** 2 + dy21 ** 2)
h = sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)
rotation = atan2(-dy21, dx21)
rotation *= 180.0 / math.pi # radians to degrees
return np.vstack((cx, cy, w, h, rotation)).T if is_numpy else torch.stack((cx, cy, w, h, rotation), dim=1)
def xywhr2xyxyxyxy(center):
"""
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4].
Args:
center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5).
Returns:
(numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8).
"""
is_numpy = isinstance(center, np.ndarray)
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
cx, cy, w, h, rotation = center.T
rotation *= math.pi / 180.0 # degrees to radians
dx = w / 2
dy = h / 2
cos_rot = cos(rotation)
sin_rot = sin(rotation)
dx_cos_rot = dx * cos_rot
dx_sin_rot = dx * sin_rot
dy_cos_rot = dy * cos_rot
dy_sin_rot = dy * sin_rot
x1 = cx - dx_cos_rot - dy_sin_rot
y1 = cy + dx_sin_rot - dy_cos_rot
x2 = cx + dx_cos_rot - dy_sin_rot
y2 = cy - dx_sin_rot - dy_cos_rot
x3 = cx + dx_cos_rot + dy_sin_rot
y3 = cy - dx_sin_rot + dy_cos_rot
x4 = cx - dx_cos_rot + dy_sin_rot
y4 = cy + dx_sin_rot + dy_cos_rot
return np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).T if is_numpy else torch.stack(
(x1, y1, x2, y2, x3, y3, x4, y4), dim=1)
def ltwh2xyxy(x):
"""
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray | torch.Tensor): the input image
Returns:
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 2] = x[..., 2] + x[..., 0] # width
y[..., 3] = x[..., 3] + x[..., 1] # height
return y
def segments2boxes(segments):
"""
It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
Args:
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
Returns:
(np.ndarray): the xywh coordinates of the bounding boxes.
"""
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
"""
Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.
Args:
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
n (int): number of points to resample the segment to. Defaults to 1000
Returns:
segments (list): the resampled segments.
"""
for i, s in enumerate(segments):
s = np.concatenate((s, s[0:1, :]), axis=0)
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)],
dtype=np.float32).reshape(2, -1).T # segment xy
return segments
def crop_mask(masks, boxes):
"""
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.
Args:
masks (torch.Tensor): [n, h, w] tensor of masks
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
Returns:
(torch.Tensor): The masks are being cropped to the bounding box.
"""
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
quality but is slower.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
(torch.Tensor): The upsampled masks.
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Apply masks to bounding boxes using the output of the mask head.
Args:
protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.
Returns:
(torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
are the height and width of the input image. The mask is applied to the bounding boxes.
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
downsampled_bboxes = bboxes.clone()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
return masks.gt_(0.5)
def process_mask_native(protos, masks_in, bboxes, shape):
"""
It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = scale_masks(masks[None], shape)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def scale_masks(masks, shape, padding=True):
"""
Rescale segment masks to shape.
Args:
masks (torch.Tensor): (N, C, H, W).
shape (tuple): Height and width.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
"""
mh, mw = masks.shape[2:]
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding
if padding:
pad[0] /= 2
pad[1] /= 2
top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x
bottom, right = (int(mh - pad[1]), int(mw - pad[0]))
masks = masks[..., top:bottom, left:right]
masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False) # NCHW
return masks
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
"""
Rescale segment coordinates (xy) from img1_shape to img0_shape
Args:
img1_shape (tuple): The shape of the image that the coords are from.
coords (torch.Tensor): the coords to be scaled of shape n,2.
img0_shape (tuple): the shape of the image that the segmentation is being applied to.
ratio_pad (tuple): the ratio of the image size to the padded image size.
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
Returns:
coords (torch.Tensor): The scaled coordinates.
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
coords[..., 0] -= pad[0] # x padding
coords[..., 1] -= pad[1] # y padding
coords[..., 0] /= gain
coords[..., 1] /= gain
clip_coords(coords, img0_shape)
if normalize:
coords[..., 0] /= img0_shape[1] # width
coords[..., 1] /= img0_shape[0] # height
return coords
def masks2segments(masks, strategy='largest'):
"""
It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
Args:
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
strategy (str): 'concat' or 'largest'. Defaults to largest
Returns:
segments (List): list of segment masks
"""
segments = []
for x in masks.int().cpu().numpy().astype('uint8'):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if c:
if strategy == 'concat': # concatenate all segments
c = np.concatenate([x.reshape(-1, 2) for x in c])
elif strategy == 'largest': # select largest segment
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
else:
c = np.zeros((0, 2)) # no segments found
segments.append(c.astype('float32'))
return segments
def clean_str(s):
"""
Cleans a string by replacing special characters with underscore _
Args:
s (str): a string needing special characters replaced
Returns:
(str): a string with special characters replaced by an underscore _
"""
return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)
|