File size: 32,080 Bytes
ab854b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors

from .metrics import bbox_iou
from .tal import bbox2dist
import numpy as np
import sys
#torch.autograd.set_detect_anomaly(True)
# class CustomDiceLoss(nn.Module):
#     def __init__(self, weight=None, size_average=True):
#         super(CustomDiceLoss, self).__init__()
#         self.size_average = size_average
#     def forward(self, inputs, targets, smooth=1):
        
#         # If your model contains a sigmoid or equivalent activation layer, comment this line
#         #inputs = F.sigmoid(inputs)       
      
#         # Check if the input tensors are of expected shape
#         if inputs.shape != targets.shape:
#             raise ValueError("Shape mismatch: inputs and targets must have the same shape")

#         # Compute Dice loss for each sample in the batch
#         dice_loss_values = []
#         for input_sample, target_sample in zip(inputs, targets):
            
#             # Flatten tensors for each sample
#             input_sample = input_sample.view(-1)
#             target_sample = target_sample.view(-1)

#             intersection = (input_sample * target_sample).sum()
#             dice = (2. * intersection + smooth) / (input_sample.sum() + target_sample.sum() + smooth)
            
#             dice_loss_values.append(1 - dice)

#         # Convert list of Dice loss values to a tensor
#         dice_loss_values = torch.stack(dice_loss_values)

#         # If you want the average loss over the batch to be returned
#         if self.size_average:
#             return dice_loss_values.mean()
#         else:
#             # If you want individual losses for each sample in the batch
#             return dice_loss_values
class CustomDiceLoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(CustomDiceLoss, self).__init__()
        self.size_average = size_average

    def forward(self, inputs, targets, smooth=1):
        
        # If your model contains a sigmoid or equivalent activation layer, comment this line
        #inputs = F.sigmoid(inputs)       

        # Check if the input tensors are of expected shape
        if inputs.shape != targets.shape:
            raise ValueError("Shape mismatch: inputs and targets must have the same shape")

        # Flatten tensors
        inputs_flat = inputs.view(inputs.shape[0], -1)
        targets_flat = targets.view(targets.shape[0], -1)

        # Compute intersections and unions
        intersection = (inputs_flat * targets_flat).sum(1)
        union = inputs_flat.sum(1) + targets_flat.sum(1)

        # Compute Dice
        dice = (2. * intersection + smooth) / (union + smooth)
        dice_loss = 1 - dice

        # If you want the average loss over the batch to be returned
        if self.size_average:
            return dice_loss.mean()
        else:
            # If you want individual losses for each sample in the batch
            return dice_loss


def display_shape(input_item, prefix=""):
    # If the input_item is a list or a tuple, iterate through its elements
    if isinstance(input_item, (list, tuple)):
        for idx, item in enumerate(input_item):
            # For nested lists or tuples, add an additional level to the prefix
            new_prefix = f"{prefix}[{idx}]"
            display_shape(item, new_prefix)
    # If the input_item is a tensor, print its shape
    elif isinstance(input_item, torch.Tensor):
        print(f"{prefix}: {input_item.shape}")
    else:
        print(f"Unsupported type {type(input_item)} at {prefix}")

import numpy as np
import torch.nn.functional as F


def Heaviside(phi, alpha, epsilon):
    device = phi.device  # Get the device of phi

    # For values outside of [-epsilon, epsilon]
    H_positive = torch.ones_like(phi, device=device) 
    H_negative = alpha * torch.ones_like(phi, device=device)

    # For values inside [-epsilon, epsilon]
    default = 3 * (1 - alpha) / 4 * (phi / epsilon - phi**3 / (3 * epsilon**3)) + (1 + alpha) / 2

    # Construct Heavisidve using conditions
    H = torch.where(phi > epsilon, H_positive, torch.where(phi < -epsilon, H_negative, default))

    return H
def smooth_heaviside(phi, alpha, epsilon):
    # Scale and shift phi for the sigmoid function
    scaled_phi = (phi - alpha) / epsilon
    
    # Apply the sigmoid function
    H = torch.sigmoid(scaled_phi)

    return H

def calc_Phi(variable, LSgrid):
    device = variable.device  # Get the device of the variable

    x0 = variable[0]
    y0 = variable[1]
    L = variable[2]
    t1 = variable[3]
    t2 = variable[4]
    angle = variable[5]

    # Rotation
    st = torch.sin(angle)
    ct = torch.cos(angle)
    x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0) 
    y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0)

    # Regularized hyperellipse equation
    a = L / 2  # Semi-major axis
    b = (t1 + t2) / 2  # Semi-minor axis
    small_constant = 1e-9  # To avoid division by zero
    temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6)

    # # Ensuring the hyperellipse shape
    allPhi = 1 - (temp + small_constant)**(1/6)

    # # Call Heaviside function with allPhi
    alpha = torch.tensor(1e-9, device=device, dtype=torch.float32)
    epsilon = torch.tensor(0.01, device=device, dtype=torch.float32)
    H_phi = smooth_heaviside(allPhi, alpha, epsilon)
    return allPhi, H_phi



class VarifocalLoss(nn.Module):
    """Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""

    def __init__(self):
        """Initialize the VarifocalLoss class."""
        super().__init__()

    @staticmethod
    def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        """Computes varfocal loss."""
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
                    weight).mean(1).sum()
        return loss


class FocalLoss(nn.Module):
    """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""

    def __init__(self, ):
        super().__init__()

    @staticmethod
    def forward(pred, label, gamma=1.5, alpha=0.25):
        """Calculates and updates confusion matrix for object detection/classification tasks."""
        loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = pred.sigmoid()  # prob from logits
        p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
        modulating_factor = (1.0 - p_t) ** gamma
        loss *= modulating_factor
        if alpha > 0:
            alpha_factor = label * alpha + (1 - label) * (1 - alpha)
            loss *= alpha_factor
        return loss.mean(1).sum()


class BboxLoss(nn.Module):

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
        loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl

    @staticmethod
    def _df_loss(pred_dist, target):
        """Return sum of left and right DFL losses."""
        # Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
        tl = target.long()  # target left
        tr = tl + 1  # target right
        wl = tr - target  # weight left
        wr = 1 - wl  # weight right
        return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
                F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)


class KeypointLoss(nn.Module):
    """Criterion class for computing training losses."""

    def __init__(self, sigmas) -> None:
        super().__init__()
        self.sigmas = sigmas

    def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
        """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
        d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
        kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
        # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9)  # from formula
        e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2  # from cocoeval
        return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()


class v8DetectionLoss:
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled

        device = next(model.parameters()).device  # get model device
        h = model.args  # hyperparameters

        m = model.model[-1]  # Detect() module
        self.bce = nn.BCEWithLogitsLoss(reduction='none')
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.no = m.no
        self.reg_max = m.reg_max
        self.device = device

        self.use_dfl = m.reg_max > 1

        self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
        self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        """Decode predicted object bounding box coordinates from anchor points and distribution."""
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, preds, batch):
        """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats = preds[1] if isinstance(preds, tuple) else preds
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size = pred_scores.shape[0]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
                                              target_scores_sum, fg_mask)

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)


class v8SegmentationLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        super().__init__(model)
        self.nm = model.model[-1].nm  # number of masks
        try:
            self.overlap = model.args.overlap_mask
        except:
            self.overlap =False
        self.diceloss = CustomDiceLoss()
        self.bceloss = nn.BCELoss()

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(5, device=self.device)  # box, cls, dfl
        if len(preds) ==3:
            feats, pred_masks, proto = preds 
        elif len(preds) ==4:
            feats, pred_masks, proto, regression_tensor = preds
            #Let's describe each variables:
            #display_shape(preds)
        else:
            feats, pred_masks, proto, regression_tensor = preds[1]
        batch_size, _, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = batch['batch_idx'].view(-1, 1)
            targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
                            "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
                            "i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
                            "correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
                            'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e


        
        
        
        if 'regression_vars' in batch:
            max_objects = 300  # Set the fixed maximum number of objects
            padded_vars = [np.pad(item, ((0, max_objects - len(item)), (0, 0)), mode='constant') for item in batch['regression_vars']]
            regression_targets = torch.tensor(np.stack(padded_vars)).to(self.device).float()
            # pboxes
            pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
            test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
                pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
                anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, regression_targets)
        else:
            pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
            test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
                pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
                anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, None)


        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way

        REG_LOSS = 'pixels'
        # if 'regression_vars' in batch:
        if REG_LOSS == 'direct':
            # Assuming fg_mask has shape (b, h*w)
            # Expand the dimensions of fg_mask to match regression_tensor
            fg_regression_mask = fg_mask.unsqueeze(1).expand(-1, 6, -1)  # fg_regression_mask now has shape (BS, 6, 8400)
            filtered_predictions = regression_tensor[fg_regression_mask]
            #check if there are nans in regression_tensor:
            

            filtered_target = regression_scores[fg_regression_mask.permute(0,2,1).contiguous()]
            # Now create masked versions of your regression tensor and regression scores
            # Compute MSE loss on masked tensors

            regression_loss = F.mse_loss(filtered_predictions, filtered_target,reduction="mean")

        if (REG_LOSS == 'pixels' or REG_LOSS=="level") and self.hyp.reg_gain > 0:
            # if torch.isnan(regression_tensor).any():
            #     print("There are nans in regression_tensor")
            #     sys.exit()
            DW = 1.0
            DH = 1.0

            nelx = int(200 * DW)
            nely = int(200 * DH)

            x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1))
            LSgrid = torch.stack((y.flatten(), x.flatten()), dim=0)

            xmax = torch.tensor([1.0, 1.0, 1.0, 1.0, 0.2, 0.2]).to('cuda')
            xmin = torch.tensor([0.0, 0.0, 0.0, 0.0, 0.001, 0.001]).to('cuda')
            
            xmax = xmax.unsqueeze(-1)
            xmin = xmin.unsqueeze(-1)
            xmax = xmax.unsqueeze(0).expand(batch_size, -1, -1)  # Shape: (8, 6, 1)
            xmin = xmin.unsqueeze(0).expand(batch_size, -1, -1)  # Shape: (8, 6, 1)
            unnormalized_preds = regression_tensor * (xmax - xmin) + xmin
            # # # The design variables are infered from the two endpoints and the two thicknesses:
            x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2
            y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2

            L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 + 
                        (unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2)

            L = L+1e-4
            t_1 = unnormalized_preds[:, 4]
            t_2 = unnormalized_preds[:, 5]

            epsilon = 1e-10
            y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon
            x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon
            theta = torch.atan2(y_diff, x_diff)
            formatted_variables = torch.cat((x_center.unsqueeze(1), 
                                y_center.unsqueeze(1), 
                                L.unsqueeze(1), 
                                t_1.unsqueeze(1), 
                                t_2.unsqueeze(1), 
                                theta.unsqueeze(1)), dim=1)
            
        #print(pred_scores.shape,target_scores.shape) torch.Size([8, 8400, 1]) torch.Size([8, 8400, 1])
        loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE   

        if fg_mask.sum():
            # bbox loss
            loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
                                              target_scores, target_scores_sum, fg_mask)
            # masks loss
            masks = batch['masks'].to(self.device).float()
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]

            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea)  # seg

                    test_bboxes = pred_bboxes*stride_tensor
                    test_bboxes = test_bboxes[i][fg_mask[i]]  / imgsz[[1, 0, 1, 0]]
                    # clip the test_bboxes between 0 and 1:
                    test_bboxes = torch.clip(test_bboxes,0,1)
                    pxyxy = test_bboxes * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)

                    if (REG_LOSS == "pixels" or REG_LOSS=="level") and self.hyp.reg_gain > 0:

                        # filtered_predictions = formatted_variables[i][:,fg_mask[i]]
                        filtered_predictions = formatted_variables[i][:,fg_mask[i]]

                        pred_phi , H_phi = calc_Phi(filtered_predictions,LSgrid.to('cuda'))
                        if REG_LOSS == "level":
                            pred_phi= torch.reshape(pred_phi,(nely+1,nelx+1,H_phi.shape[-1]))
                            normalized = (pred_phi - pred_phi.min()) / (pred_phi.max() - pred_phi.min())
                            cropped_gt_mask = crop_mask(gt_mask,pxyxy)

                            normalized = normalized.permute(2, 0, 1).unsqueeze(1)  # Now the shape is ([80, 1, 51, 51])
                            normalized = F.interpolate(normalized, size=cropped_gt_mask.shape[-2:], mode='nearest')
                            
                            level_loss = F.mse_loss(normalized.squeeze(1), cropped_gt_mask, reduction="mean")
                

                            loss[4]+=level_loss

                        else:
                            H_phi= torch.reshape(H_phi,(nely+1,nelx+1,H_phi.shape[-1]))
                        
                            # Rearrange H_phi to the shape ([batch_size, channels, height, width])
                            H_phi = H_phi.permute(2, 0, 1).unsqueeze(1)  # Now the shape is ([80, 1, 51, 51])
                            cropped_gt_mask = crop_mask(gt_mask,pxyxy)
                            print(test_bboxes.shape)
                            print(test_bboxes)
                            # Use interpolate to resize
                            H_phi_resized = F.interpolate(H_phi, size=cropped_gt_mask.shape[-2:], mode='nearest')
                            # Rearrange H_phi_resized back to the shape ([height, width, batch_size])
                            H_phi_resized = H_phi_resized.squeeze(1)  # Now the shape is ([80, 160, 160])
                        
                            dice = self.diceloss(H_phi_resized, cropped_gt_mask)
                            # mse = F.mse_loss(H_phi_resized, cropped_gt_mask, reduction="mean")
                            loss[4]+= dice


                # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
                else:
                    loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss
                    loss[4] += 0.0
        # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
        else:
            loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss
            loss[4] += 0.0
        if REG_LOSS =='direct':
            loss[4] = regression_loss
        else:
            loss[4] *= self.hyp.reg_gain / batch_size

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.box / batch_size  # seg gain
        loss[2] *= self.hyp.cls  # cls gain
        loss[3] *= self.hyp.dfl  # dfl gain
        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        """Mask loss for one image."""
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
    
    def single_reg_loss(self, gt_mask, pred, xyxy, area):
        """Mask loss for one image."""
        loss = F.binary_cross_entropy_with_logits(pred, gt_mask, reduction='none')
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()


class v8PoseLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        super().__init__(model)
        self.kpt_shape = model.model[-1].kpt_shape
        self.bce_pose = nn.BCEWithLogitsLoss()
        is_pose = self.kpt_shape == [17, 3]
        nkpt = self.kpt_shape[0]  # number of keypoints
        sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
        self.keypoint_loss = KeypointLoss(sigmas=sigmas)

    def __call__(self, preds, batch):
        """Calculate the total loss and detach it."""
        loss = torch.zeros(5, device=self.device)  # box, cls, dfl, kpt_location, kpt_visibility
        feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        batch_size = pred_scores.shape[0]
        batch_idx = batch['batch_idx'].view(-1, 1)
        targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape))  # (b, h*w, 17, 3)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
                                              target_scores_sum, fg_mask)
            keypoints = batch['keypoints'].to(self.device).float().clone()
            keypoints[..., 0] *= imgsz[1]
            keypoints[..., 1] *= imgsz[0]
            for i in range(batch_size):
                if fg_mask[i].sum():
                    idx = target_gt_idx[i][fg_mask[i]]
                    gt_kpt = keypoints[batch_idx.view(-1) == i][idx]  # (n, 51)
                    gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
                    gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
                    area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
                    pred_kpt = pred_kpts[i][fg_mask[i]]
                    kpt_mask = gt_kpt[..., 2] != 0
                    loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area)  # pose loss
                    # kpt_score loss
                    if pred_kpt.shape[-1] == 3:
                        loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float())  # keypoint obj loss

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.pose / batch_size  # pose gain
        loss[2] *= self.hyp.kobj / batch_size  # kobj gain
        loss[3] *= self.hyp.cls  # cls gain
        loss[4] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    @staticmethod
    def kpts_decode(anchor_points, pred_kpts):
        """Decodes predicted keypoints to image coordinates."""
        y = pred_kpts.clone()
        y[..., :2] *= 2.0
        y[..., 0] += anchor_points[:, [0]] - 0.5
        y[..., 1] += anchor_points[:, [1]] - 0.5
        return y


class v8ClassificationLoss:
    """Criterion class for computing training losses."""

    def __call__(self, preds, batch):
        """Compute the classification loss between predictions and true labels."""
        loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
        loss_items = loss.detach()
        return loss, loss_items