File size: 32,080 Bytes
ab854b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from .metrics import bbox_iou
from .tal import bbox2dist
import numpy as np
import sys
#torch.autograd.set_detect_anomaly(True)
# class CustomDiceLoss(nn.Module):
# def __init__(self, weight=None, size_average=True):
# super(CustomDiceLoss, self).__init__()
# self.size_average = size_average
# def forward(self, inputs, targets, smooth=1):
# # If your model contains a sigmoid or equivalent activation layer, comment this line
# #inputs = F.sigmoid(inputs)
# # Check if the input tensors are of expected shape
# if inputs.shape != targets.shape:
# raise ValueError("Shape mismatch: inputs and targets must have the same shape")
# # Compute Dice loss for each sample in the batch
# dice_loss_values = []
# for input_sample, target_sample in zip(inputs, targets):
# # Flatten tensors for each sample
# input_sample = input_sample.view(-1)
# target_sample = target_sample.view(-1)
# intersection = (input_sample * target_sample).sum()
# dice = (2. * intersection + smooth) / (input_sample.sum() + target_sample.sum() + smooth)
# dice_loss_values.append(1 - dice)
# # Convert list of Dice loss values to a tensor
# dice_loss_values = torch.stack(dice_loss_values)
# # If you want the average loss over the batch to be returned
# if self.size_average:
# return dice_loss_values.mean()
# else:
# # If you want individual losses for each sample in the batch
# return dice_loss_values
class CustomDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(CustomDiceLoss, self).__init__()
self.size_average = size_average
def forward(self, inputs, targets, smooth=1):
# If your model contains a sigmoid or equivalent activation layer, comment this line
#inputs = F.sigmoid(inputs)
# Check if the input tensors are of expected shape
if inputs.shape != targets.shape:
raise ValueError("Shape mismatch: inputs and targets must have the same shape")
# Flatten tensors
inputs_flat = inputs.view(inputs.shape[0], -1)
targets_flat = targets.view(targets.shape[0], -1)
# Compute intersections and unions
intersection = (inputs_flat * targets_flat).sum(1)
union = inputs_flat.sum(1) + targets_flat.sum(1)
# Compute Dice
dice = (2. * intersection + smooth) / (union + smooth)
dice_loss = 1 - dice
# If you want the average loss over the batch to be returned
if self.size_average:
return dice_loss.mean()
else:
# If you want individual losses for each sample in the batch
return dice_loss
def display_shape(input_item, prefix=""):
# If the input_item is a list or a tuple, iterate through its elements
if isinstance(input_item, (list, tuple)):
for idx, item in enumerate(input_item):
# For nested lists or tuples, add an additional level to the prefix
new_prefix = f"{prefix}[{idx}]"
display_shape(item, new_prefix)
# If the input_item is a tensor, print its shape
elif isinstance(input_item, torch.Tensor):
print(f"{prefix}: {input_item.shape}")
else:
print(f"Unsupported type {type(input_item)} at {prefix}")
import numpy as np
import torch.nn.functional as F
def Heaviside(phi, alpha, epsilon):
device = phi.device # Get the device of phi
# For values outside of [-epsilon, epsilon]
H_positive = torch.ones_like(phi, device=device)
H_negative = alpha * torch.ones_like(phi, device=device)
# For values inside [-epsilon, epsilon]
default = 3 * (1 - alpha) / 4 * (phi / epsilon - phi**3 / (3 * epsilon**3)) + (1 + alpha) / 2
# Construct Heavisidve using conditions
H = torch.where(phi > epsilon, H_positive, torch.where(phi < -epsilon, H_negative, default))
return H
def smooth_heaviside(phi, alpha, epsilon):
# Scale and shift phi for the sigmoid function
scaled_phi = (phi - alpha) / epsilon
# Apply the sigmoid function
H = torch.sigmoid(scaled_phi)
return H
def calc_Phi(variable, LSgrid):
device = variable.device # Get the device of the variable
x0 = variable[0]
y0 = variable[1]
L = variable[2]
t1 = variable[3]
t2 = variable[4]
angle = variable[5]
# Rotation
st = torch.sin(angle)
ct = torch.cos(angle)
x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0)
y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0)
# Regularized hyperellipse equation
a = L / 2 # Semi-major axis
b = (t1 + t2) / 2 # Semi-minor axis
small_constant = 1e-9 # To avoid division by zero
temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6)
# # Ensuring the hyperellipse shape
allPhi = 1 - (temp + small_constant)**(1/6)
# # Call Heaviside function with allPhi
alpha = torch.tensor(1e-9, device=device, dtype=torch.float32)
epsilon = torch.tensor(0.01, device=device, dtype=torch.float32)
H_phi = smooth_heaviside(allPhi, alpha, epsilon)
return allPhi, H_phi
class VarifocalLoss(nn.Module):
"""Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""
def __init__(self):
"""Initialize the VarifocalLoss class."""
super().__init__()
@staticmethod
def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
"""Computes varfocal loss."""
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
with torch.cuda.amp.autocast(enabled=False):
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
weight).mean(1).sum()
return loss
class FocalLoss(nn.Module):
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
def __init__(self, ):
super().__init__()
@staticmethod
def forward(pred, label, gamma=1.5, alpha=0.25):
"""Calculates and updates confusion matrix for object detection/classification tasks."""
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = pred.sigmoid() # prob from logits
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
modulating_factor = (1.0 - p_t) ** gamma
loss *= modulating_factor
if alpha > 0:
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
loss *= alpha_factor
return loss.mean(1).sum()
class BboxLoss(nn.Module):
def __init__(self, reg_max, use_dfl=False):
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
super().__init__()
self.reg_max = reg_max
self.use_dfl = use_dfl
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
"""IoU loss."""
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
# DFL loss
if self.use_dfl:
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
loss_dfl = loss_dfl.sum() / target_scores_sum
else:
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
return loss_iou, loss_dfl
@staticmethod
def _df_loss(pred_dist, target):
"""Return sum of left and right DFL losses."""
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
tl = target.long() # target left
tr = tl + 1 # target right
wl = tr - target # weight left
wr = 1 - wl # weight right
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
class KeypointLoss(nn.Module):
"""Criterion class for computing training losses."""
def __init__(self, sigmas) -> None:
super().__init__()
self.sigmas = sigmas
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
class v8DetectionLoss:
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.reg_max = m.reg_max
self.device = device
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
def preprocess(self, targets, batch_size, scale_tensor):
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
counts = counts.to(dtype=torch.int32)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
loss = torch.zeros(3, device=self.device) # box, cls, dfl
feats = preds[1] if isinstance(preds, tuple) else preds
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
batch_size = pred_scores.shape[0]
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.cls # cls gain
loss[2] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
class v8SegmentationLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.nm = model.model[-1].nm # number of masks
try:
self.overlap = model.args.overlap_mask
except:
self.overlap =False
self.diceloss = CustomDiceLoss()
self.bceloss = nn.BCELoss()
def __call__(self, preds, batch):
"""Calculate and return the loss for the YOLO model."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl
if len(preds) ==3:
feats, pred_masks, proto = preds
elif len(preds) ==4:
feats, pred_masks, proto, regression_tensor = preds
#Let's describe each variables:
#display_shape(preds)
else:
feats, pred_masks, proto, regression_tensor = preds[1]
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
try:
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
except RuntimeError as e:
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
if 'regression_vars' in batch:
max_objects = 300 # Set the fixed maximum number of objects
padded_vars = [np.pad(item, ((0, max_objects - len(item)), (0, 0)), mode='constant') for item in batch['regression_vars']]
regression_targets = torch.tensor(np.stack(padded_vars)).to(self.device).float()
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, regression_targets)
else:
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, None)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
REG_LOSS = 'pixels'
# if 'regression_vars' in batch:
if REG_LOSS == 'direct':
# Assuming fg_mask has shape (b, h*w)
# Expand the dimensions of fg_mask to match regression_tensor
fg_regression_mask = fg_mask.unsqueeze(1).expand(-1, 6, -1) # fg_regression_mask now has shape (BS, 6, 8400)
filtered_predictions = regression_tensor[fg_regression_mask]
#check if there are nans in regression_tensor:
filtered_target = regression_scores[fg_regression_mask.permute(0,2,1).contiguous()]
# Now create masked versions of your regression tensor and regression scores
# Compute MSE loss on masked tensors
regression_loss = F.mse_loss(filtered_predictions, filtered_target,reduction="mean")
if (REG_LOSS == 'pixels' or REG_LOSS=="level") and self.hyp.reg_gain > 0:
# if torch.isnan(regression_tensor).any():
# print("There are nans in regression_tensor")
# sys.exit()
DW = 1.0
DH = 1.0
nelx = int(200 * DW)
nely = int(200 * DH)
x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1))
LSgrid = torch.stack((y.flatten(), x.flatten()), dim=0)
xmax = torch.tensor([1.0, 1.0, 1.0, 1.0, 0.2, 0.2]).to('cuda')
xmin = torch.tensor([0.0, 0.0, 0.0, 0.0, 0.001, 0.001]).to('cuda')
xmax = xmax.unsqueeze(-1)
xmin = xmin.unsqueeze(-1)
xmax = xmax.unsqueeze(0).expand(batch_size, -1, -1) # Shape: (8, 6, 1)
xmin = xmin.unsqueeze(0).expand(batch_size, -1, -1) # Shape: (8, 6, 1)
unnormalized_preds = regression_tensor * (xmax - xmin) + xmin
# # # The design variables are infered from the two endpoints and the two thicknesses:
x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2
y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2
L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 +
(unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2)
L = L+1e-4
t_1 = unnormalized_preds[:, 4]
t_2 = unnormalized_preds[:, 5]
epsilon = 1e-10
y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon
x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon
theta = torch.atan2(y_diff, x_diff)
formatted_variables = torch.cat((x_center.unsqueeze(1),
y_center.unsqueeze(1),
L.unsqueeze(1),
t_1.unsqueeze(1),
t_2.unsqueeze(1),
theta.unsqueeze(1)), dim=1)
#print(pred_scores.shape,target_scores.shape) torch.Size([8, 8400, 1]) torch.Size([8, 8400, 1])
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
if fg_mask.sum():
# bbox loss
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
target_scores, target_scores_sum, fg_mask)
# masks loss
masks = batch['masks'].to(self.device).float()
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
for i in range(batch_size):
if fg_mask[i].sum():
mask_idx = target_gt_idx[i][fg_mask[i]]
if self.overlap:
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
else:
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg
test_bboxes = pred_bboxes*stride_tensor
test_bboxes = test_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
# clip the test_bboxes between 0 and 1:
test_bboxes = torch.clip(test_bboxes,0,1)
pxyxy = test_bboxes * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
if (REG_LOSS == "pixels" or REG_LOSS=="level") and self.hyp.reg_gain > 0:
# filtered_predictions = formatted_variables[i][:,fg_mask[i]]
filtered_predictions = formatted_variables[i][:,fg_mask[i]]
pred_phi , H_phi = calc_Phi(filtered_predictions,LSgrid.to('cuda'))
if REG_LOSS == "level":
pred_phi= torch.reshape(pred_phi,(nely+1,nelx+1,H_phi.shape[-1]))
normalized = (pred_phi - pred_phi.min()) / (pred_phi.max() - pred_phi.min())
cropped_gt_mask = crop_mask(gt_mask,pxyxy)
normalized = normalized.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51])
normalized = F.interpolate(normalized, size=cropped_gt_mask.shape[-2:], mode='nearest')
level_loss = F.mse_loss(normalized.squeeze(1), cropped_gt_mask, reduction="mean")
loss[4]+=level_loss
else:
H_phi= torch.reshape(H_phi,(nely+1,nelx+1,H_phi.shape[-1]))
# Rearrange H_phi to the shape ([batch_size, channels, height, width])
H_phi = H_phi.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51])
cropped_gt_mask = crop_mask(gt_mask,pxyxy)
print(test_bboxes.shape)
print(test_bboxes)
# Use interpolate to resize
H_phi_resized = F.interpolate(H_phi, size=cropped_gt_mask.shape[-2:], mode='nearest')
# Rearrange H_phi_resized back to the shape ([height, width, batch_size])
H_phi_resized = H_phi_resized.squeeze(1) # Now the shape is ([80, 160, 160])
dice = self.diceloss(H_phi_resized, cropped_gt_mask)
# mse = F.mse_loss(H_phi_resized, cropped_gt_mask, reduction="mean")
loss[4]+= dice
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[4] += 0.0
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[4] += 0.0
if REG_LOSS =='direct':
loss[4] = regression_loss
else:
loss[4] *= self.hyp.reg_gain / batch_size
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.box / batch_size # seg gain
loss[2] *= self.hyp.cls # cls gain
loss[3] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
"""Mask loss for one image."""
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def single_reg_loss(self, gt_mask, pred, xyxy, area):
"""Mask loss for one image."""
loss = F.binary_cross_entropy_with_logits(pred, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
class v8PoseLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.kpt_shape = model.model[-1].kpt_shape
self.bce_pose = nn.BCEWithLogitsLoss()
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0] # number of keypoints
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
def __call__(self, preds, batch):
"""Calculate the total loss and detach it."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
batch_size = pred_scores.shape[0]
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
keypoints = batch['keypoints'].to(self.device).float().clone()
keypoints[..., 0] *= imgsz[1]
keypoints[..., 1] *= imgsz[0]
for i in range(batch_size):
if fg_mask[i].sum():
idx = target_gt_idx[i][fg_mask[i]]
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[i][fg_mask[i]]
kpt_mask = gt_kpt[..., 2] != 0
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
# kpt_score loss
if pred_kpt.shape[-1] == 3:
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.pose / batch_size # pose gain
loss[2] *= self.hyp.kobj / batch_size # kobj gain
loss[3] *= self.hyp.cls # cls gain
loss[4] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
@staticmethod
def kpts_decode(anchor_points, pred_kpts):
"""Decodes predicted keypoints to image coordinates."""
y = pred_kpts.clone()
y[..., :2] *= 2.0
y[..., 0] += anchor_points[:, [0]] - 0.5
y[..., 1] += anchor_points[:, [1]] - 0.5
return y
class v8ClassificationLoss:
"""Criterion class for computing training losses."""
def __call__(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
loss_items = loss.detach()
return loss, loss_items
|