File size: 14,980 Bytes
ab854b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Ultralytics YOLO ๐, AGPL-3.0 license
"""
Check a model's accuracy on a test or val split of a dataset.
Usage:
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
Usage - formats:
$ yolo mode=val model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import json
import time
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.utils import LOGGER, TQDM_BAR_FORMAT, callbacks, colorstr, emojis
from ultralytics.utils.checks import check_imgsz
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
from ultralytics.utils.loss import v8SegmentationLoss
import torch
def print_tensor_shapes(obj, level=0):
# Base case: If the object is a tensor, print its shape
if isinstance(obj, torch.Tensor):
print(" " * level + "-> Tensor Shape:", obj.shape)
# If it's a list or tuple, loop through each element
elif isinstance(obj, (list, tuple)):
print(" " * level + f"{type(obj).__name__}:")
for item in obj:
print_tensor_shapes(item, level + 1)
# If it's a dictionary, loop through each value
elif isinstance(obj, dict):
print(" " * level + "Dict:")
for key, value in obj.items():
print(" " * (level + 1) + f"Key: {key}")
print_tensor_shapes(value, level + 2)
else:
print(" " * level + f"Unsupported type: {type(obj)}")
class BaseValidator:
"""
BaseValidator
A base class for creating validators.
Attributes:
args (SimpleNamespace): Configuration for the validator.
dataloader (DataLoader): Dataloader to use for validation.
pbar (tqdm): Progress bar to update during validation.
model (nn.Module): Model to validate.
data (dict): Data dictionary.
device (torch.device): Device to use for validation.
batch_i (int): Current batch index.
training (bool): Whether the model is in training mode.
names (dict): Class names.
seen: Records the number of images seen so far during validation.
stats: Placeholder for statistics during validation.
confusion_matrix: Placeholder for a confusion matrix.
nc: Number of classes.
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
jdict (dict): Dictionary to store JSON validation results.
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
batch processing times in milliseconds.
save_dir (Path): Directory to save results.
plots (dict): Dictionary to store plots for visualization.
callbacks (dict): Dictionary to store various callback functions.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""
Initializes a BaseValidator instance.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
save_dir (Path, optional): Directory to save results.
pbar (tqdm.tqdm): Progress bar for displaying progress.
args (SimpleNamespace): Configuration for the validator.
_callbacks (dict): Dictionary to store various callback functions.
"""
self.args = get_cfg(overrides=args)
self.dataloader = dataloader
self.pbar = pbar
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.names = None
self.seen = None
self.stats = None
self.confusion_matrix = None
self.nc = None
self.iouv = None
self.jdict = None
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.save_dir = save_dir or get_save_dir(self.args)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
if self.args.conf is None:
self.args.conf = 0.001 # default conf=0.001
self.plots = {}
self.callbacks = _callbacks or callbacks.get_default_callbacks()
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.training = trainer is not None
augment = self.args.augment and (not self.training)
if self.training:
self.device = trainer.device
self.data = trainer.data
model = trainer.ema.ema or trainer.model
self.args.half = self.device.type != 'cpu' # force FP16 val during training
model = model.half() if self.args.half else model.float()
self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
model.eval()
else:
callbacks.add_integration_callbacks(self)
self.run_callbacks('on_val_start')
model = AutoBackend(model or self.args.model,
device=select_device(self.args.device, self.args.batch),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half)
self.model = model
self.device = model.device # update device
self.args.half = model.fp16 # update half
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_imgsz(self.args.imgsz, stride=stride)
if engine:
self.args.batch = model.batch_size
elif not pt and not jit:
self.args.batch = 1 # export.py models default to batch-size 1
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if isinstance(self.args.data, str) and self.args.data.split('.')[-1] in ('yaml', 'yml'):
self.data = check_det_dataset(self.args.data)
elif self.args.task == 'classify':
self.data = check_cls_dataset(self.args.data, split=self.args.split)
else:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found โ"))
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
model.eval()
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
dt = Profile(), Profile(), Profile(), Profile()
n_batches = len(self.dataloader)
desc = self.get_desc()
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
# which may affect classification task since this arg is in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.run_callbacks('on_val_batch_start')
self.batch_i = batch_i
# Preprocess
with dt[0]:
batch = self.preprocess(batch)
# Inference
with dt[1]:
preds = model(batch['img'], augment=augment)
# Loss
with dt[2]:
if self.training:
self.loss += model.loss(batch, preds)[1]
# Postprocess
with dt[3]:
preds,final_reg = self.postprocess(preds)
# print('preds 0')
# print_tensor_shapes(preds[0])
# print('preds 1')
# print_tensor_shapes(preds[1])
#print_tensor_shapes(preds[1])
self.update_metrics(preds, batch,final_reg)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.run_callbacks('on_val_batch_end')
stats = self.get_stats()
print(stats)
self.check_stats(stats)
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt)))
self.finalize_metrics()
self.print_results()
self.run_callbacks('on_val_end')
if self.training:
model.float()
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')}
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
else:
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' %
tuple(self.speed.values()))
if self.args.save_json and self.jdict:
with open(str(self.save_dir / 'predictions.json'), 'w') as f:
LOGGER.info(f'Saving {f.name}...')
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
if self.args.plots or self.args.save_json:
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
return stats
def match_predictions(self, pred_classes, true_classes, iou):
"""
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
Args:
pred_classes (torch.Tensor): Predicted class indices of shape(N,).
true_classes (torch.Tensor): Target class indices of shape(M,).
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth
Returns:
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
"""
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = true_classes[:, None] == pred_classes
for i, iouv in enumerate(self.iouv):
x = torch.nonzero(iou.ge(iouv) & correct_class) # IoU > threshold and classes match
if x.shape[0]:
# Concatenate [label, detect, iou]
matches = torch.cat((x, iou[x[:, 0], x[:, 1]].unsqueeze(1)), 1).cpu().numpy()
if x.shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Runs all callbacks associated with a specified event."""
for callback in self.callbacks.get(event, []):
callback(self)
def get_dataloader(self, dataset_path, batch_size):
"""Get data loader from dataset path and batch size."""
raise NotImplementedError('get_dataloader function not implemented for this validator')
def build_dataset(self, img_path):
"""Build dataset"""
raise NotImplementedError('build_dataset function not implemented in validator')
def preprocess(self, batch):
"""Preprocesses an input batch."""
return batch
def postprocess(self, preds):
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
return preds
def init_metrics(self, model):
"""Initialize performance metrics for the YOLO model."""
pass
def update_metrics(self, preds, batch):
"""Updates metrics based on predictions and batch."""
pass
def finalize_metrics(self, *args, **kwargs):
"""Finalizes and returns all metrics."""
pass
def get_stats(self):
"""Returns statistics about the model's performance."""
return {}
def check_stats(self, stats):
"""Checks statistics."""
pass
def print_results(self):
"""Prints the results of the model's predictions."""
pass
def get_desc(self):
"""Get description of the YOLO model."""
pass
@property
def metric_keys(self):
"""Returns the metric keys used in YOLO training/validation."""
return []
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
path = Path(name)
self.plots[path] = {'data': data, 'timestamp': time.time()}
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
"""Plots validation samples during training."""
pass
def plot_predictions(self, batch, preds, ni):
"""Plots YOLO model predictions on batch images."""
pass
def pred_to_json(self, preds, batch):
"""Convert predictions to JSON format."""
pass
def eval_json(self, stats):
"""Evaluate and return JSON format of prediction statistics."""
pass
|