llm / app.py
tommy24's picture
Update app.py
93aea48
raw
history blame
1.21 kB
import gradio as gr
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.llms import GPT4All
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# import requests
# url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
# response = requests.get(url)
# with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
# f.write(response.content)
print("DONE")
def func(user):
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
local_path = (
"./nous-hermes-13b.ggmlv3.q4_0.bin"
)
# # Callbacks support token-wise streaming
# callbacks = [StreamingStdOutCallbackHandler()]
# Verbose is required to pass to the callback manager
llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = user
llm_chain.run(question)
return llm_chain.run(question)
iface = gr.Interface(fn=func, inputs="text", outputs="text")
iface.launch()