tommy24 commited on
Commit
d99d736
·
1 Parent(s): 27d022c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -180
app.py CHANGED
@@ -402,6 +402,8 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
402
  if max_rounded_prediction > 0.5:
403
  print("\nWays to dispose of this waste: " + max_label)
404
  messages.append({"role": "user", "content": content + " " + max_label})
 
 
405
  print("IMAGE messages after appending:", messages)
406
 
407
  header = {
@@ -415,12 +417,12 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
415
  "messages": messages,
416
  "model": model_llm
417
  }).json()
418
- print("RESPONSE TRY", response)
419
  reply = response["choices"][0]["message"]["content"]
420
  messages.append({"role": "assistant", "content": reply})
421
  output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
422
- except Exception as e:
423
- print("ERROR:", e)
424
 
425
  elif max_rounded_prediction < 0.5:
426
  output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
@@ -448,18 +450,15 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
448
  "Authorization": f"Bearer {auth}"
449
  }
450
 
451
- try:
452
- response = requests.post(host, headers=headers, json={
453
- "messages": messages,
454
- "model": model_llm
455
- }).json()
456
 
457
- reply = response["choices"][0]["message"]["content"]
458
- messages.append({"role": "assistant", "content": reply})
459
 
460
- output.append({"Mode": "Chat", "content": reply})
461
- except Exception as e:
462
- print("ERROR:", e)
463
 
464
  return output
465
  else:
@@ -481,173 +480,6 @@ iface = gr.Interface(
481
  )
482
  iface.launch()
483
 
484
-
485
- ###### import gradio as gr
486
- # import numpy as np
487
- # import cv2 as cv
488
- # import requests
489
- # import io
490
- # from PIL import Image
491
- # import os
492
- # import tensorflow as tf
493
- # import random
494
-
495
- # host = os.environ.get("host")
496
- # code = os.environ.get("code")
497
- # model_llm = os.environ.get("model")
498
- # content = os.environ.get("content")
499
- # state = os.environ.get("state")
500
- # system = os.environ.get("system")
501
- # auth = os.environ.get("auth")
502
- # auth2 = os.environ.get("auth2")
503
- # data = None
504
-
505
- # np.set_printoptions(suppress=True)
506
-
507
- # model = tf.keras.models.load_model('keras_model.h5')
508
- # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
509
-
510
- # with open("labels.txt", "r") as file:
511
- # labels = file.read().splitlines()
512
-
513
- # messages = [
514
- # {"role": "system", "content": system}
515
- # ]
516
-
517
- # def classify(platform, UserInput, Images, Textbox2, Textbox3):
518
- # if Textbox3 == code:
519
- # imageData = None
520
- # if Images != "None":
521
- # output = []
522
- # headers = {
523
- # "Authorization": f"Bearer {auth2}"
524
- # }
525
- # if platform == "wh":
526
- # get_image = requests.get(Images, headers=headers)
527
- # if get_image.status_code == 200:
528
- # image_data = get_image.content
529
- # elif platform == "web":
530
- # print("WEB")
531
- # else:
532
- # pass
533
-
534
- # image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
535
- # image = cv.resize(image, (224, 224))
536
- # image_array = np.asarray(image)
537
- # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
538
- # data[0] = normalized_image_array
539
-
540
- # prediction = model.predict(data)
541
-
542
- # max_label_index = None
543
- # max_prediction_value = -1
544
-
545
- # print('Prediction')
546
-
547
- # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
548
- # Textbox2 = Textbox2.split(",")
549
- # Textbox2_edited = [x.strip() for x in Textbox2]
550
- # Textbox2_edited = list(Textbox2_edited)
551
- # Textbox2_edited.append(UserInput)
552
- # print(UserInput)
553
- # print("appending")
554
- # messages.append({"role": "user", "content": UserInput})
555
-
556
- # for i, label in enumerate(labels):
557
- # prediction_value = float(prediction[0][i])
558
- # rounded_value = round(prediction_value, 2)
559
- # print(f'{label}: {rounded_value}')
560
-
561
- # if prediction_value > max_prediction_value:
562
- # max_label_index = i
563
- # max_prediction_value = prediction_value
564
-
565
- # if max_label_index is not None:
566
- # max_label = labels[max_label_index].split(' ', 1)[1]
567
- # max_rounded_prediction = round(max_prediction_value, 2)
568
- # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
569
-
570
- # if max_rounded_prediction > 0.5:
571
- # print("\nWays to dispose of this waste: " + max_label)
572
- # messages.append({"role": "user", "content": content + " " + max_label})
573
- # # messages.append({"role": "user", "content": max_label})
574
-
575
- # print("IMAGE messages after appending:", messages)
576
-
577
- # header = {
578
- # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
579
- # "Content-Type": "application/json",
580
- # "Authorization": f"Bearer {auth}"
581
- # }
582
-
583
- # try:
584
- # response = requests.post(host, headers=header, json={
585
- # "messages": messages,
586
- # "model": model_llm
587
- # }).json()
588
- # print("RESPONSE TRY",response)
589
- # reply = response["choices"][0]["message"]["content"]
590
- # messages.append({"role": "assistant", "content": reply})
591
- # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
592
- # except:
593
- # print("DOESN'T WORK")
594
-
595
- # elif max_rounded_prediction < 0.5:
596
- # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
597
-
598
- # return output
599
-
600
- # elif Images == "None":
601
- # output = []
602
-
603
- # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
604
- # Textbox2 = Textbox2.split(",")
605
- # Textbox2_edited = [x.strip() for x in Textbox2]
606
- # Textbox2_edited = list(Textbox2_edited)
607
- # Textbox2_edited.append(UserInput)
608
-
609
- # for i in Textbox2_edited:
610
- # messages.append({"role": "user", "content": i})
611
-
612
- # print("messages after appending:", messages)
613
-
614
- # messages.append({"role": "user", "content": UserInput})
615
-
616
- # headers = {
617
- # "Content-Type": "application/json",
618
- # "Authorization": f"Bearer {auth}"
619
- # }
620
-
621
- # response = requests.post(host, headers=headers, json={
622
- # "messages": messages,
623
- # "model": model_llm
624
- # }).json()
625
-
626
- # reply = response["choices"][0]["message"]["content"]
627
- # messages.append({"role": "assistant", "content": reply})
628
-
629
- # output.append({"Mode": "Chat", "content": reply})
630
-
631
- # return output
632
- # else:
633
- # return "Unauthorized"
634
-
635
- # user_inputs = [
636
- # gr.Textbox(label="Platform", type="text"),
637
- # gr.Textbox(label="User Input", type="text"),
638
- # gr.Textbox(label="Image", type="text"),
639
- # gr.Textbox(label="Textbox2", type="text"),
640
- # gr.Textbox(label="Textbox3", type="password")
641
- # ]
642
-
643
- # iface = gr.Interface(
644
- # fn=classify,
645
- # inputs=user_inputs,
646
- # outputs=gr.outputs.JSON(),
647
- # title="Classifier",
648
- # )
649
- # iface.launch()
650
-
651
  # import gradio as gr
652
  # import numpy as np
653
  # import cv2 as cv
 
402
  if max_rounded_prediction > 0.5:
403
  print("\nWays to dispose of this waste: " + max_label)
404
  messages.append({"role": "user", "content": content + " " + max_label})
405
+ # messages.append({"role": "user", "content": max_label})
406
+
407
  print("IMAGE messages after appending:", messages)
408
 
409
  header = {
 
417
  "messages": messages,
418
  "model": model_llm
419
  }).json()
420
+ print("RESPONSE TRY",response)
421
  reply = response["choices"][0]["message"]["content"]
422
  messages.append({"role": "assistant", "content": reply})
423
  output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
424
+ except:
425
+ print("DOESN'T WORK")
426
 
427
  elif max_rounded_prediction < 0.5:
428
  output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
 
450
  "Authorization": f"Bearer {auth}"
451
  }
452
 
453
+ response = requests.post(host, headers=headers, json={
454
+ "messages": messages,
455
+ "model": model_llm
456
+ }).json()
 
457
 
458
+ reply = response["choices"][0]["message"]["content"]
459
+ messages.append({"role": "assistant", "content": reply})
460
 
461
+ output.append({"Mode": "Chat", "content": reply})
 
 
462
 
463
  return output
464
  else:
 
480
  )
481
  iface.launch()
482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483
  # import gradio as gr
484
  # import numpy as np
485
  # import cv2 as cv