Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -402,6 +402,8 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
402 |
if max_rounded_prediction > 0.5:
|
403 |
print("\nWays to dispose of this waste: " + max_label)
|
404 |
messages.append({"role": "user", "content": content + " " + max_label})
|
|
|
|
|
405 |
print("IMAGE messages after appending:", messages)
|
406 |
|
407 |
header = {
|
@@ -415,12 +417,12 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
415 |
"messages": messages,
|
416 |
"model": model_llm
|
417 |
}).json()
|
418 |
-
print("RESPONSE TRY",
|
419 |
reply = response["choices"][0]["message"]["content"]
|
420 |
messages.append({"role": "assistant", "content": reply})
|
421 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
422 |
-
except
|
423 |
-
print("
|
424 |
|
425 |
elif max_rounded_prediction < 0.5:
|
426 |
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
@@ -448,18 +450,15 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
448 |
"Authorization": f"Bearer {auth}"
|
449 |
}
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
}).json()
|
456 |
|
457 |
-
|
458 |
-
|
459 |
|
460 |
-
|
461 |
-
except Exception as e:
|
462 |
-
print("ERROR:", e)
|
463 |
|
464 |
return output
|
465 |
else:
|
@@ -481,173 +480,6 @@ iface = gr.Interface(
|
|
481 |
)
|
482 |
iface.launch()
|
483 |
|
484 |
-
|
485 |
-
###### import gradio as gr
|
486 |
-
# import numpy as np
|
487 |
-
# import cv2 as cv
|
488 |
-
# import requests
|
489 |
-
# import io
|
490 |
-
# from PIL import Image
|
491 |
-
# import os
|
492 |
-
# import tensorflow as tf
|
493 |
-
# import random
|
494 |
-
|
495 |
-
# host = os.environ.get("host")
|
496 |
-
# code = os.environ.get("code")
|
497 |
-
# model_llm = os.environ.get("model")
|
498 |
-
# content = os.environ.get("content")
|
499 |
-
# state = os.environ.get("state")
|
500 |
-
# system = os.environ.get("system")
|
501 |
-
# auth = os.environ.get("auth")
|
502 |
-
# auth2 = os.environ.get("auth2")
|
503 |
-
# data = None
|
504 |
-
|
505 |
-
# np.set_printoptions(suppress=True)
|
506 |
-
|
507 |
-
# model = tf.keras.models.load_model('keras_model.h5')
|
508 |
-
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
509 |
-
|
510 |
-
# with open("labels.txt", "r") as file:
|
511 |
-
# labels = file.read().splitlines()
|
512 |
-
|
513 |
-
# messages = [
|
514 |
-
# {"role": "system", "content": system}
|
515 |
-
# ]
|
516 |
-
|
517 |
-
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
518 |
-
# if Textbox3 == code:
|
519 |
-
# imageData = None
|
520 |
-
# if Images != "None":
|
521 |
-
# output = []
|
522 |
-
# headers = {
|
523 |
-
# "Authorization": f"Bearer {auth2}"
|
524 |
-
# }
|
525 |
-
# if platform == "wh":
|
526 |
-
# get_image = requests.get(Images, headers=headers)
|
527 |
-
# if get_image.status_code == 200:
|
528 |
-
# image_data = get_image.content
|
529 |
-
# elif platform == "web":
|
530 |
-
# print("WEB")
|
531 |
-
# else:
|
532 |
-
# pass
|
533 |
-
|
534 |
-
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
535 |
-
# image = cv.resize(image, (224, 224))
|
536 |
-
# image_array = np.asarray(image)
|
537 |
-
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
538 |
-
# data[0] = normalized_image_array
|
539 |
-
|
540 |
-
# prediction = model.predict(data)
|
541 |
-
|
542 |
-
# max_label_index = None
|
543 |
-
# max_prediction_value = -1
|
544 |
-
|
545 |
-
# print('Prediction')
|
546 |
-
|
547 |
-
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
548 |
-
# Textbox2 = Textbox2.split(",")
|
549 |
-
# Textbox2_edited = [x.strip() for x in Textbox2]
|
550 |
-
# Textbox2_edited = list(Textbox2_edited)
|
551 |
-
# Textbox2_edited.append(UserInput)
|
552 |
-
# print(UserInput)
|
553 |
-
# print("appending")
|
554 |
-
# messages.append({"role": "user", "content": UserInput})
|
555 |
-
|
556 |
-
# for i, label in enumerate(labels):
|
557 |
-
# prediction_value = float(prediction[0][i])
|
558 |
-
# rounded_value = round(prediction_value, 2)
|
559 |
-
# print(f'{label}: {rounded_value}')
|
560 |
-
|
561 |
-
# if prediction_value > max_prediction_value:
|
562 |
-
# max_label_index = i
|
563 |
-
# max_prediction_value = prediction_value
|
564 |
-
|
565 |
-
# if max_label_index is not None:
|
566 |
-
# max_label = labels[max_label_index].split(' ', 1)[1]
|
567 |
-
# max_rounded_prediction = round(max_prediction_value, 2)
|
568 |
-
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
569 |
-
|
570 |
-
# if max_rounded_prediction > 0.5:
|
571 |
-
# print("\nWays to dispose of this waste: " + max_label)
|
572 |
-
# messages.append({"role": "user", "content": content + " " + max_label})
|
573 |
-
# # messages.append({"role": "user", "content": max_label})
|
574 |
-
|
575 |
-
# print("IMAGE messages after appending:", messages)
|
576 |
-
|
577 |
-
# header = {
|
578 |
-
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
579 |
-
# "Content-Type": "application/json",
|
580 |
-
# "Authorization": f"Bearer {auth}"
|
581 |
-
# }
|
582 |
-
|
583 |
-
# try:
|
584 |
-
# response = requests.post(host, headers=header, json={
|
585 |
-
# "messages": messages,
|
586 |
-
# "model": model_llm
|
587 |
-
# }).json()
|
588 |
-
# print("RESPONSE TRY",response)
|
589 |
-
# reply = response["choices"][0]["message"]["content"]
|
590 |
-
# messages.append({"role": "assistant", "content": reply})
|
591 |
-
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
592 |
-
# except:
|
593 |
-
# print("DOESN'T WORK")
|
594 |
-
|
595 |
-
# elif max_rounded_prediction < 0.5:
|
596 |
-
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
597 |
-
|
598 |
-
# return output
|
599 |
-
|
600 |
-
# elif Images == "None":
|
601 |
-
# output = []
|
602 |
-
|
603 |
-
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
604 |
-
# Textbox2 = Textbox2.split(",")
|
605 |
-
# Textbox2_edited = [x.strip() for x in Textbox2]
|
606 |
-
# Textbox2_edited = list(Textbox2_edited)
|
607 |
-
# Textbox2_edited.append(UserInput)
|
608 |
-
|
609 |
-
# for i in Textbox2_edited:
|
610 |
-
# messages.append({"role": "user", "content": i})
|
611 |
-
|
612 |
-
# print("messages after appending:", messages)
|
613 |
-
|
614 |
-
# messages.append({"role": "user", "content": UserInput})
|
615 |
-
|
616 |
-
# headers = {
|
617 |
-
# "Content-Type": "application/json",
|
618 |
-
# "Authorization": f"Bearer {auth}"
|
619 |
-
# }
|
620 |
-
|
621 |
-
# response = requests.post(host, headers=headers, json={
|
622 |
-
# "messages": messages,
|
623 |
-
# "model": model_llm
|
624 |
-
# }).json()
|
625 |
-
|
626 |
-
# reply = response["choices"][0]["message"]["content"]
|
627 |
-
# messages.append({"role": "assistant", "content": reply})
|
628 |
-
|
629 |
-
# output.append({"Mode": "Chat", "content": reply})
|
630 |
-
|
631 |
-
# return output
|
632 |
-
# else:
|
633 |
-
# return "Unauthorized"
|
634 |
-
|
635 |
-
# user_inputs = [
|
636 |
-
# gr.Textbox(label="Platform", type="text"),
|
637 |
-
# gr.Textbox(label="User Input", type="text"),
|
638 |
-
# gr.Textbox(label="Image", type="text"),
|
639 |
-
# gr.Textbox(label="Textbox2", type="text"),
|
640 |
-
# gr.Textbox(label="Textbox3", type="password")
|
641 |
-
# ]
|
642 |
-
|
643 |
-
# iface = gr.Interface(
|
644 |
-
# fn=classify,
|
645 |
-
# inputs=user_inputs,
|
646 |
-
# outputs=gr.outputs.JSON(),
|
647 |
-
# title="Classifier",
|
648 |
-
# )
|
649 |
-
# iface.launch()
|
650 |
-
|
651 |
# import gradio as gr
|
652 |
# import numpy as np
|
653 |
# import cv2 as cv
|
|
|
402 |
if max_rounded_prediction > 0.5:
|
403 |
print("\nWays to dispose of this waste: " + max_label)
|
404 |
messages.append({"role": "user", "content": content + " " + max_label})
|
405 |
+
# messages.append({"role": "user", "content": max_label})
|
406 |
+
|
407 |
print("IMAGE messages after appending:", messages)
|
408 |
|
409 |
header = {
|
|
|
417 |
"messages": messages,
|
418 |
"model": model_llm
|
419 |
}).json()
|
420 |
+
print("RESPONSE TRY",response)
|
421 |
reply = response["choices"][0]["message"]["content"]
|
422 |
messages.append({"role": "assistant", "content": reply})
|
423 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
424 |
+
except:
|
425 |
+
print("DOESN'T WORK")
|
426 |
|
427 |
elif max_rounded_prediction < 0.5:
|
428 |
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
|
|
450 |
"Authorization": f"Bearer {auth}"
|
451 |
}
|
452 |
|
453 |
+
response = requests.post(host, headers=headers, json={
|
454 |
+
"messages": messages,
|
455 |
+
"model": model_llm
|
456 |
+
}).json()
|
|
|
457 |
|
458 |
+
reply = response["choices"][0]["message"]["content"]
|
459 |
+
messages.append({"role": "assistant", "content": reply})
|
460 |
|
461 |
+
output.append({"Mode": "Chat", "content": reply})
|
|
|
|
|
462 |
|
463 |
return output
|
464 |
else:
|
|
|
480 |
)
|
481 |
iface.launch()
|
482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
# import gradio as gr
|
484 |
# import numpy as np
|
485 |
# import cv2 as cv
|