set -x EVAL_DATA_DIR=eval OUTPUT_DIR=eval_output CKPT=DAMO-NLP-SG/VideoLLaMA2-7B CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev) gpu_list="${CUDA_VISIBLE_DEVICES:-0}" IFS=',' read -ra GPULIST <<< "$gpu_list" # divide data via the number of GPUs per task GPUS_PER_TASK=1 CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK)) output_file=${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/merge.csv if [ ! -f "$output_file" ]; then for IDX in $(seq 0 $((CHUNKS-1))); do # select the GPUs for the task gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}") TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_egoschema.py \ --model-path ${CKPT} \ --video-folder ${EVAL_DATA_DIR}/egoschema/good_clips_git \ --question-file ${EVAL_DATA_DIR}/egoschema/questions.json \ --answer-file ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv \ --num-chunks $CHUNKS \ --chunk-idx $IDX & done wait # Clear out the output file if it exists. > "$output_file" echo 'q_uid, answer' >> "$output_file" # Loop through the indices and concatenate each file. for IDX in $(seq 0 $((CHUNKS-1))); do cat ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv >> "$output_file" done fi