set -x | |
EVAL_DATA_DIR=eval | |
OUTPUT_DIR=eval_output | |
CKPT=DAMO-NLP-SG/VideoLLaMA2-7B | |
CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev) | |
gpu_list="${CUDA_VISIBLE_DEVICES:-0}" | |
IFS=',' read -ra GPULIST <<< "$gpu_list" | |
# divide data via the number of GPUs per task | |
GPUS_PER_TASK=1 | |
CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK)) | |
output_file=${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/merge.csv | |
if [ ! -f "$output_file" ]; then | |
for IDX in $(seq 0 $((CHUNKS-1))); do | |
# select the GPUs for the task | |
gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}") | |
TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_egoschema.py \ | |
--model-path ${CKPT} \ | |
--video-folder ${EVAL_DATA_DIR}/egoschema/good_clips_git \ | |
--question-file ${EVAL_DATA_DIR}/egoschema/questions.json \ | |
--answer-file ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv \ | |
--num-chunks $CHUNKS \ | |
--chunk-idx $IDX & | |
done | |
wait | |
# Clear out the output file if it exists. | |
> "$output_file" | |
echo 'q_uid, answer' >> "$output_file" | |
# Loop through the indices and concatenate each file. | |
for IDX in $(seq 0 $((CHUNKS-1))); do | |
cat ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv >> "$output_file" | |
done | |
fi |