Spaces:
Runtime error
Runtime error
Initial commit
Browse files- app.py +152 -0
- carprice_two_layer_model_mse_00015.pth +3 -0
- mileage_scaler.joblib +3 -0
- one_hot_encoder.joblib +3 -0
- price_scaler.joblib +3 -0
- requirements.txt +2 -0
- year_scaler.joblib +3 -0
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
|
10 |
+
|
11 |
+
brands = [
|
12 |
+
'Toyota', 'Honda', 'Mazda', 'Mitsubishi',
|
13 |
+
'Nissan', 'Suzuki'
|
14 |
+
]
|
15 |
+
models = [
|
16 |
+
'Vios', 'Altis', 'Civic', 'Mazda3', 'Camry',
|
17 |
+
'Mirage', 'Brio', 'Lancer Ex', 'Jazz', 'Accord',
|
18 |
+
'Lancer', 'Yaris', 'Almera', 'City', 'Swift', 'Mazda2',
|
19 |
+
'Teana', 'Note', 'Celerio', 'March', 'Tiida', 'Prius',
|
20 |
+
'Ciaz', 'Sylphy', 'Pulsar', 'Attrage', 'Sunny'
|
21 |
+
]
|
22 |
+
engines = [
|
23 |
+
1.5, 1.8, 1.7, 2.0, 1.2, 1.6, 2.4,
|
24 |
+
2.5, 1.0, 1.3, 2.3, 3.0, 2.2
|
25 |
+
]
|
26 |
+
segments = ['B-Segment', 'C-Segment', 'D-Segment', 'Eco Car']
|
27 |
+
provinces = [
|
28 |
+
'สงขลา', 'กรุงเทพมหานคร', 'สระบุรี', 'ชัยนาท', 'ระยอง', 'นครสวรรค์',
|
29 |
+
'นนทบุรี', 'ตาก', 'สมุทรสาคร', 'เชียงใหม่', 'ลำปาง', 'สุพรรณบุรี', 'เชียงราย',
|
30 |
+
'เพชรบุรี', 'พิษณุโลก', 'นครปฐม', 'อุดรธานี', 'สมุทรปราการ', 'ปทุมธานี',
|
31 |
+
'นครราชสีมา', 'ชลบุรี', 'ปัตตานี', 'ราชบุรี', 'ลำพูน', 'กระบี่', 'ฉะเชิงเทรา',
|
32 |
+
'พัทลุง', 'อ่างทอง', 'ขอนแก่น', 'ปราจีนบุรี', 'สุราษฎร์ธานี', 'ภูเก็ต',
|
33 |
+
'หนองบัวลำภู', 'พิจิตร', 'พะเยา', 'ตราด', 'นครศรีธรรมราช', 'บุรีรัมย์',
|
34 |
+
'ลพบุรี', 'อุตรดิตถ์', 'ยโสธร', 'อุบลราชธานี', 'สิงห์บุรี', 'พระนครศรีอยุธยา',
|
35 |
+
'กาฬสินธุ์', 'สกลนคร', 'ร้อยเอ็ด', 'ระนอง', 'นครพนม', 'อุทัยธานี', 'จันทบุรี',
|
36 |
+
'มหาสารคาม', 'กาญจนบุรี', 'แพร่', 'บึงกาฬ', 'กำแพงเพชร', 'สมุทรสงคราม',
|
37 |
+
'สุโขทัย', 'ตรัง', 'แม่ฮ่องสอน', 'อำนาจเจริญ', 'นครนายก', 'ชัยภูมิ', 'พังงา',
|
38 |
+
'สระแก้ว', 'สุรินทร์', 'นราธิวาส', 'สตูล', 'ประจวบคีรีขันธ์', 'เพชรบูรณ์', 'ศรีสะเกษ',
|
39 |
+
'หนองคาย', 'ยะลา', 'น่าน'
|
40 |
+
]
|
41 |
+
colors = ['Gray', 'Black', 'Gold', 'Silver', 'Brown', 'White',
|
42 |
+
'Red', 'Yellow', 'Blue', 'Green', 'Cyan', 'Orange']
|
43 |
+
examples = [
|
44 |
+
['Honda', 'Civic', 1.8, 'C-Segment', 'ตรัง', 'Gray', 2009, 185477.0],
|
45 |
+
['Honda', 'Accord', 2.4, 'D-Segment', 'ขอนแก่น', 'Black', 2003, 166508.0],
|
46 |
+
['Honda', 'Jazz', 1.5, 'B-Segment', 'กรุงเทพมหานคร', 'White', 2011, 62000.0],
|
47 |
+
['Honda', 'Civic', 1.8, 'C-Segment', 'พระนครศรีอยุธยา', 'White', 2012, 165346.0],
|
48 |
+
['Suzuki', 'Swift', 1.2, 'Eco Car', 'กรุงเทพมหานคร', 'White', 2016, 193000.0],
|
49 |
+
['Honda', 'City', 1.0, 'B-Segment', 'กรุงเทพมหานคร', 'Gray', 2020, 29000.0],
|
50 |
+
['Honda', 'City', 1.5, 'B-Segment', 'พิษณุโลก', 'Gray', 2007, 126208.0],
|
51 |
+
['Toyota', 'Yaris', 1.5, 'Eco Car', 'เชียงใหม่', 'White', 2013, 100000.0],
|
52 |
+
['Toyota', 'Altis', 1.6, 'C-Segment', 'กรุงเทพมหานคร', 'Silver', 2009, 260000.0],
|
53 |
+
['Honda', 'Civic', 1.8, 'C-Segment', 'กรุงเทพมหานคร', 'Silver', 2006, 232433.0],
|
54 |
+
]
|
55 |
+
CAT_COLUMNS = ["Brand", "Model", "Engine", "Segment", "Province", "Color"]
|
56 |
+
|
57 |
+
|
58 |
+
class CarPriceDataset(Dataset):
|
59 |
+
def __init__(self, X, y = None):
|
60 |
+
self.X = X
|
61 |
+
if y is not None:
|
62 |
+
self.y = y
|
63 |
+
else:
|
64 |
+
self.y = None
|
65 |
+
|
66 |
+
def __len__(self):
|
67 |
+
return len(self.X)
|
68 |
+
|
69 |
+
def __getitem__(self, idx):
|
70 |
+
if self.y is not None:
|
71 |
+
return self.X[idx], self.y[idx]
|
72 |
+
else:
|
73 |
+
return self.X[idx]
|
74 |
+
|
75 |
+
class CarPriceTwoLayerModel(nn.Module):
|
76 |
+
def __init__(self, input_size, output_size, intermediate_dim = 10):
|
77 |
+
super().__init__()
|
78 |
+
self.linear1 = nn.Linear(input_size, intermediate_dim)
|
79 |
+
self.linear2 = nn.Linear(intermediate_dim, output_size)
|
80 |
+
self.relu = nn.ReLU()
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = self.linear1(x)
|
84 |
+
x = self.relu(x)
|
85 |
+
x = self.linear2(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
# Load model
|
89 |
+
pred_model = CarPriceTwoLayerModel(138, 1)
|
90 |
+
pred_model.load_state_dict(torch.load("carprice_two_layer_model_mse_00015.pth"))
|
91 |
+
|
92 |
+
# Load one-hot encoder and scaler
|
93 |
+
ohe = joblib.load("one_hot_encoder.joblib")
|
94 |
+
year_scaler = joblib.load("year_scaler.joblib")
|
95 |
+
mileage_scaler = joblib.load("mileage_scaler.joblib")
|
96 |
+
price_scaler = joblib.load("price_scaler.joblib")
|
97 |
+
|
98 |
+
|
99 |
+
def predict(model, data_loader):
|
100 |
+
model.eval()
|
101 |
+
y_pred_list = []
|
102 |
+
for x in data_loader:
|
103 |
+
y_pred = model(x.float())
|
104 |
+
prediction = y_pred.detach().numpy()
|
105 |
+
y_pred_list.extend(prediction)
|
106 |
+
y_pred_list = np.concatenate(y_pred_list)
|
107 |
+
return y_pred_list
|
108 |
+
|
109 |
+
|
110 |
+
def predict_car_price(
|
111 |
+
brand: str, model: str, engine: float, segment: str, province: str,
|
112 |
+
color: str, year: float, mileage: float
|
113 |
+
):
|
114 |
+
df = pd.DataFrame([{
|
115 |
+
"Brand": brand,
|
116 |
+
"Model": model,
|
117 |
+
"Engine": engine,
|
118 |
+
"Segment": segment,
|
119 |
+
"Province": province,
|
120 |
+
"Color": color,
|
121 |
+
"Year": year,
|
122 |
+
"Mileage": mileage,
|
123 |
+
}])
|
124 |
+
features = np.hstack([
|
125 |
+
ohe.transform(df[CAT_COLUMNS]),
|
126 |
+
year_scaler.transform(df[["Year"]]),
|
127 |
+
mileage_scaler.transform(df[["Mileage"]])
|
128 |
+
])
|
129 |
+
feat_dataset = CarPriceDataset(features)
|
130 |
+
dataloaders = DataLoader(feat_dataset, batch_size=32, shuffle=False)
|
131 |
+
y_pred_lr = predict(pred_model, dataloaders)
|
132 |
+
return int(price_scaler.inverse_transform(y_pred_lr.reshape(-1, 1)).ravel()[0])
|
133 |
+
|
134 |
+
|
135 |
+
interface = gr.Interface(
|
136 |
+
fn=predict_car_price,
|
137 |
+
inputs=[
|
138 |
+
gr.Dropdown(brands, label="Brand", info="Select Car Brand"),
|
139 |
+
gr.Dropdown(models, label="Model", info="Select Car Model"),
|
140 |
+
gr.Dropdown(engines, label="Engine Size", info="Select Engine Size"),
|
141 |
+
gr.Dropdown(segments, label="Car segment", info="Select Car Segment"),
|
142 |
+
gr.Dropdown(provinces, label="Province", info="Select Province"),
|
143 |
+
gr.Dropdown(colors, label="Color", info="Select Color"),
|
144 |
+
gr.Slider(1990, 2023, label="Year", info="Select Year"),
|
145 |
+
gr.Slider(0, 400000, label="Mileage", info="Select Mileage"),
|
146 |
+
],
|
147 |
+
outputs=gr.Textbox(label="ราคาทำนาย (บาท)", placeholder="xxx,xxx (บาท)"),
|
148 |
+
examples=examples,
|
149 |
+
title="ทำนายราคารถมือสอง",
|
150 |
+
description="ตัวอย่างแอพพลิเคชั่นสำหรับคำนวณราคารถมือสอง",
|
151 |
+
)
|
152 |
+
interface.launch()
|
carprice_two_layer_model_mse_00015.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de4e5ec96b38ff26a2395f90a07398aaf75aee33d1fe861c0d02ee8dc4382422
|
3 |
+
size 7553
|
mileage_scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:765d6c3426f034c6cc807f0fc5576ec44dca78080db2e8eabc3f9d6e87ccb6cb
|
3 |
+
size 909
|
one_hot_encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7c68c8fc8f04f21e440f60b3dfb6adc5364dd986a78540c495cb90d00b8265b
|
3 |
+
size 5034
|
price_scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dc64226c6ebd02dbde58eb62d52ba13d61cee5390cd410867902c8ba52b4c82
|
3 |
+
size 907
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
gradio_client==0.2.7
|
year_scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86f4ce94683756213f272a70526c81ce2e5d087f5b9cc45dd9b373177d8667c3
|
3 |
+
size 906
|