Spaces:
Runtime error
Runtime error
timep12345
commited on
Commit
·
ae87366
1
Parent(s):
971b34a
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,97 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
|
5 |
+
from langchain.document_loaders import DataFrameLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.llms import HuggingFaceHub
|
8 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from trafilatura import fetch_url, extract
|
12 |
+
from trafilatura.spider import focused_crawler
|
13 |
|
14 |
+
|
15 |
+
|
16 |
+
def loading_website():
|
17 |
+
return "Loading..."
|
18 |
+
|
19 |
+
def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
|
20 |
+
to_visit, links = focused_crawler(url, max_seen_urls=pages_to_visit, max_known_urls=urls_to_scrape)
|
21 |
+
print(f"{len(links)} to be crawled")
|
22 |
+
|
23 |
+
results_df = pd.DataFrame()
|
24 |
+
for url in links:
|
25 |
+
downloaded = fetch_url(url)
|
26 |
+
if downloaded:
|
27 |
+
result = extract(downloaded, output_format='json')
|
28 |
+
result = json.loads(result)
|
29 |
+
|
30 |
+
results_df = pd.concat([results_df, pd.DataFrame.from_records([result])])
|
31 |
+
|
32 |
+
loader = DataFrameLoader(results_df, page_content_column="text")
|
33 |
+
documents = loader.load()
|
34 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
35 |
+
texts = text_splitter.split_documents(documents)
|
36 |
+
embeddings = HuggingFaceHubEmbeddings()
|
37 |
+
db = Chroma.from_documents(texts, embeddings)
|
38 |
+
retriever = db.as_retriever()
|
39 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
|
40 |
+
global qa
|
41 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
42 |
+
return "Ready"
|
43 |
+
|
44 |
+
def add_text(history, text):
|
45 |
+
history = history + [(text, None)]
|
46 |
+
return history, ""
|
47 |
+
|
48 |
+
def bot(history):
|
49 |
+
response = infer(history[-1][0])
|
50 |
+
history[-1][1] = response['result']
|
51 |
+
return history
|
52 |
+
|
53 |
+
def infer(question):
|
54 |
+
|
55 |
+
query = question
|
56 |
+
result = qa({"query": query})
|
57 |
+
|
58 |
+
return result
|
59 |
+
|
60 |
+
css="""
|
61 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
62 |
+
"""
|
63 |
+
|
64 |
+
title = """
|
65 |
+
<div style="text-align: center;max-width: 700px;">
|
66 |
+
<h1>Chat with your website</h1>
|
67 |
+
<p style="text-align: center;">Enter target URL, click the "Load website to LangChain" button</p>
|
68 |
+
</div>
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
with gr.Blocks(css=css) as demo:
|
73 |
+
with gr.Column(elem_id="col-container"):
|
74 |
+
gr.HTML(title)
|
75 |
+
|
76 |
+
with gr.Column():
|
77 |
+
target_url = gr.Textbox(label="Load URL", placeholder="Enter target URL here. EX: https://www.penta.co.kr/")
|
78 |
+
#pdf_doc = gr.File(label="Load URL", file_types=['.pdf'], type="file")
|
79 |
+
repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "beomi/KoAlpaca-Polyglot-12.8B"], value="google/flan-ul2")
|
80 |
+
with gr.Row():
|
81 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
82 |
+
load_pdf = gr.Button("Load website to langchain")
|
83 |
+
|
84 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
85 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
86 |
+
submit_btn = gr.Button("Send message")
|
87 |
+
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
88 |
+
repo_id.change(url_changes, inputs=[target_url, gr.Number(value=20, visible=False), gr.Number(value=200, visible=False), repo_id], outputs=[langchain_status], queue=False)
|
89 |
+
load_pdf.click(url_changes, inputs=[target_url, gr.Number(value=20, visible=False), gr.Number(value=200, visible=False), repo_id], outputs=[langchain_status], queue=False)
|
90 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
91 |
+
bot, chatbot, chatbot
|
92 |
+
)
|
93 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
94 |
+
bot, chatbot, chatbot
|
95 |
+
)
|
96 |
+
|
97 |
+
demo.launch()
|