Spaces:
Runtime error
Runtime error
Tho Tran
commited on
Add files via upload
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from torch.autograd import Variable
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
import os
|
9 |
+
from glob import glob
|
10 |
+
import json
|
11 |
+
from json import JSONEncoder
|
12 |
+
import numpy
|
13 |
+
from sklearn.neighbors import NearestNeighbors
|
14 |
+
import streamlit as st
|
15 |
+
|
16 |
+
class NumpyArrayEncoder(JSONEncoder):
|
17 |
+
def default(self, obj):
|
18 |
+
if isinstance(obj, numpy.ndarray):
|
19 |
+
return obj.tolist()
|
20 |
+
return JSONEncoder.default(self, obj)
|
21 |
+
|
22 |
+
with open('sample.json') as json_file:
|
23 |
+
data = json.load(json_file)
|
24 |
+
|
25 |
+
resnet=models.resnet50(pretrained=True)
|
26 |
+
layer = resnet._modules.get('avgpool')
|
27 |
+
#grab all images in the lfw folder
|
28 |
+
import os
|
29 |
+
from glob import glob
|
30 |
+
path="./lfw"
|
31 |
+
|
32 |
+
result = [y for x in os.walk(path) for y in glob(os.path.join(x[0], '*.jpg'))]
|
33 |
+
resnet.eval
|
34 |
+
|
35 |
+
#d={}
|
36 |
+
|
37 |
+
preprocess=transforms.Compose([transforms.Resize(256),
|
38 |
+
transforms.CenterCrop(224),
|
39 |
+
transforms.ToTensor(),
|
40 |
+
transforms.Normalize(mean=[.485,.456,.406],std=[.229,.224,.225])
|
41 |
+
])
|
42 |
+
|
43 |
+
def get_vector(image):
|
44 |
+
# Create a PyTorch tensor with the transformed image
|
45 |
+
t_img = preprocess(image)
|
46 |
+
my_embedding = torch.zeros(2048)
|
47 |
+
|
48 |
+
# Define a function that will copy the output of a layer
|
49 |
+
def copy_data(m, i, o):
|
50 |
+
my_embedding.copy_(o.flatten()) # <-- flatten
|
51 |
+
|
52 |
+
# Attach that function to our selected layer
|
53 |
+
h = layer.register_forward_hook(copy_data)
|
54 |
+
# Run the model on our transformed image
|
55 |
+
with torch.no_grad(): # <-- no_grad context
|
56 |
+
resnet(t_img.unsqueeze(0)) # <-- unsqueeze
|
57 |
+
# Detach our copy function from the layer
|
58 |
+
h.remove()
|
59 |
+
# Return the feature vector
|
60 |
+
return my_embedding
|
61 |
+
|
62 |
+
#for image in result:
|
63 |
+
#d[image]=get_vector(Image.open(image).convert('RGB')).numpy()
|
64 |
+
|
65 |
+
image=st.file_uploader(label="upload your own file",type="jpg")
|
66 |
+
if image is None:
|
67 |
+
st.write("upload an image")
|
68 |
+
else:
|
69 |
+
input=get_vector(Image.open(image).convert('RGB')).numpy()
|
70 |
+
featurelist=[]
|
71 |
+
for img in data:
|
72 |
+
featurelist.append(data[img])
|
73 |
+
neighbors = NearestNeighbors(n_neighbors=10, algorithm='brute',metric='euclidean').fit(featurelist)
|
74 |
+
distances, indices = neighbors.kneighbors(input.reshape(1,-1))
|
75 |
+
simular=[]
|
76 |
+
for i in range(10):
|
77 |
+
simular.append(result[indices[0][i]])
|
78 |
+
st.image(simular,caption=simular)
|