import os import gradio as gr import pinecone from gpt_index import GPTIndexMemory, GPTPineconeIndex from langchain.agents import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain import OpenAI from langchain.agents import initialize_agent OPENAI_API_KEY=os.environ["OPENAI_API_KEY"] PINECONE_API_KEY=os.environ["PINECONE_API_KEY"] pinecone.init(api_key=PINECONE_API_KEY, environment="us-east1-gcp") pindex=pinecone.Index("mahathir") indexed_pinecone=GPTPineconeIndex([], pinecone_index=pindex) tools = [ Tool( name = "GPT Index", func=lambda q: str(indexed_pinecone.query(q)), description="useful for when you want to answer questions about the author. The input to this tool should be a complete english sentence.", return_direct=True ), ] memory = GPTIndexMemory(index=indexed_pinecone, memory_key="chat_history", query_kwargs={"response_mode": "compact"}) llm=OpenAI(temperature=0) agent_chain = initialize_agent(tools, llm, agent="conversational-react-description", memory=memory, verbose=True) def predict(input, history=[]): response = agent_chain.run(input) history = history + [(input, response)] response = history # response = [response] # return response, response return response, response with gr.Blocks() as demo: chatbot = gr.Chatbot() state = gr.State([]) with gr.Row(): gr.Markdown("