import argparse import gc import math import os from types import SimpleNamespace from typing import Any import torch from tqdm import tqdm from transformers import CLIPTokenizer import open_clip from library import model_util, sdxl_model_util, train_util from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline TOKENIZER_PATH = "openai/clip-vit-large-patch14" DEFAULT_NOISE_OFFSET = 0.0357 # TODO: separate checkpoint for each U-Net/Text Encoder/VAE def load_target_model(args, accelerator, model_version: str, weight_dtype): # load models for each process for pi in range(accelerator.state.num_processes): if pi == accelerator.state.local_process_index: print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}") ( load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info, ) = _load_target_model(args, model_version, weight_dtype, accelerator.device if args.lowram else "cpu") # work on low-ram device if args.lowram: text_encoder1.to(accelerator.device) text_encoder2.to(accelerator.device) unet.to(accelerator.device) vae.to(accelerator.device) gc.collect() torch.cuda.empty_cache() accelerator.wait_for_everyone() text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet]) return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info def _load_target_model(args: argparse.Namespace, model_version: str, weight_dtype, device="cpu"): # only supports StableDiffusion name_or_path = args.pretrained_model_name_or_path name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers assert ( load_stable_diffusion_format ), f"only supports StableDiffusion format for SDXL / SDXLではStableDiffusion形式のみサポートしています: {name_or_path}" print(f"load StableDiffusion checkpoint: {name_or_path}") ( text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info, ) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device) # VAEを読み込む if args.vae is not None: vae = model_util.load_vae(args.vae, weight_dtype) print("additional VAE loaded") return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info class WrapperTokenizer: # open clipのtokenizerをHuggingFaceのtokenizerと同じ形で使えるようにする # make open clip tokenizer compatible with HuggingFace tokenizer def __init__(self): open_clip_tokenizer = open_clip.tokenizer._tokenizer self.model_max_length = 77 self.bos_token_id = open_clip_tokenizer.all_special_ids[0] self.eos_token_id = open_clip_tokenizer.all_special_ids[1] self.pad_token_id = 0 # 結果から推定している assumption from result def __call__(self, *args: Any, **kwds: Any) -> Any: return self.tokenize(*args, **kwds) def tokenize(self, text, padding=False, truncation=None, max_length=None, return_tensors=None): if padding == "max_length": # for training assert max_length is not None assert truncation == True assert return_tensors == "pt" input_ids = open_clip.tokenize(text, context_length=max_length) return SimpleNamespace(**{"input_ids": input_ids}) # for weighted prompt assert isinstance(text, str), f"input must be str: {text}" input_ids = open_clip.tokenize(text, context_length=self.model_max_length)[0] # tokenizer returns list # find eos eos_index = (input_ids == self.eos_token_id).nonzero().max() input_ids = input_ids[: eos_index + 1] # include eos return SimpleNamespace(**{"input_ids": input_ids}) # for Textual Inversion # わりと面倒くさいな……これWeb UIとかでどうするんだろう / this is a bit annoying... how to do this in Web UI? def encode(self, text, add_special_tokens=False): assert not add_special_tokens input_ids = open_clip.tokenizer._tokenizer.encode(text) return input_ids def add_tokens(self, new_tokens): tokens_to_add = [] for token in new_tokens: token = token.lower() if token + "" not in open_clip.tokenizer._tokenizer.encoder: tokens_to_add.append(token) # open clipのtokenizerに直接追加する / add tokens to open clip tokenizer for token in tokens_to_add: open_clip.tokenizer._tokenizer.encoder[token + ""] = len(open_clip.tokenizer._tokenizer.encoder) open_clip.tokenizer._tokenizer.decoder[len(open_clip.tokenizer._tokenizer.decoder)] = token + "" open_clip.tokenizer._tokenizer.vocab_size += 1 # open clipのtokenizerのcacheに直接設定することで、bpeとかいうやつに含まれていなくてもtokenizeできるようにする # めちゃくちゃ乱暴なので、open clipのtokenizerの仕様が変わったら動かなくなる # set cache of open clip tokenizer directly to enable tokenization even if the token is not included in bpe # this is very rough, so it will not work if the specification of open clip tokenizer changes open_clip.tokenizer._tokenizer.cache[token] = token + "" return len(tokens_to_add) def convert_tokens_to_ids(self, tokens): input_ids = [open_clip.tokenizer._tokenizer.encoder[token + ""] for token in tokens] return input_ids def __len__(self): return open_clip.tokenizer._tokenizer.vocab_size def load_tokenizers(args: argparse.Namespace): print("prepare tokenizers") original_path = TOKENIZER_PATH tokenizer1: CLIPTokenizer = None if args.tokenizer_cache_dir: local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_")) if os.path.exists(local_tokenizer_path): print(f"load tokenizer from cache: {local_tokenizer_path}") tokenizer1 = CLIPTokenizer.from_pretrained(local_tokenizer_path) if tokenizer1 is None: tokenizer1 = CLIPTokenizer.from_pretrained(original_path) if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path): print(f"save Tokenizer to cache: {local_tokenizer_path}") tokenizer1.save_pretrained(local_tokenizer_path) if hasattr(args, "max_token_length") and args.max_token_length is not None: print(f"update token length: {args.max_token_length}") # tokenizer2 is from open_clip # TODO caching tokenizer2 = WrapperTokenizer() return [tokenizer1, tokenizer2] def get_hidden_states( args: argparse.Namespace, input_ids1, input_ids2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, weight_dtype=None ): # input_ids: b,n,77 -> b*n, 77 b_size = input_ids1.size()[0] input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77 input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77 # text_encoder1 enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True) hidden_states1 = enc_out["hidden_states"][11] # text_encoder2 enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True) hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer pool2 = enc_out["text_embeds"] # b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280 n_size = 1 if args.max_token_length is None else args.max_token_length // 75 hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1])) hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1])) if args.max_token_length is not None: # bs*3, 77, 768 or 1024 # encoder1: ... の三連を ... へ戻す states_list = [hidden_states1[:, 0].unsqueeze(1)] # for i in range(1, args.max_token_length, tokenizer1.model_max_length): states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # の後から の前まで states_list.append(hidden_states1[:, -1].unsqueeze(1)) # hidden_states1 = torch.cat(states_list, dim=1) # v2: ... ... の三連を ... ... へ戻す 正直この実装でいいのかわからん states_list = [hidden_states2[:, 0].unsqueeze(1)] # for i in range(1, args.max_token_length, tokenizer2.model_max_length): chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # の後から 最後の前まで # this causes an error: # RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation # if i > 1: # for j in range(len(chunk)): # batch_size # if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり ...のパターン # chunk[j, 0] = chunk[j, 1] # 次の の値をコピーする states_list.append(chunk) # の後から の前まで states_list.append(hidden_states2[:, -1].unsqueeze(1)) # のどちらか hidden_states2 = torch.cat(states_list, dim=1) # pool はnの最初のものを使う pool2 = pool2[::n_size] if weight_dtype is not None: # this is required for additional network training hidden_states1 = hidden_states1.to(weight_dtype) hidden_states2 = hidden_states2.to(weight_dtype) return hidden_states1, hidden_states2, pool2 def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( device=timesteps.device ) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def get_timestep_embedding(x, outdim): assert len(x.shape) == 2 b, dims = x.shape[0], x.shape[1] x = torch.flatten(x) emb = timestep_embedding(x, outdim) emb = torch.reshape(emb, (b, dims * outdim)) return emb def get_size_embeddings(orig_size, crop_size, target_size, device): emb1 = get_timestep_embedding(orig_size, 256) emb2 = get_timestep_embedding(crop_size, 256) emb3 = get_timestep_embedding(target_size, 256) vector = torch.cat([emb1, emb2, emb3], dim=1).to(device) return vector def save_sd_model_on_train_end( args: argparse.Namespace, src_path: str, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, global_step: int, text_encoder1, text_encoder2, unet, vae, logit_scale, ckpt_info, ): def sd_saver(ckpt_file, epoch_no, global_step): sdxl_model_util.save_stable_diffusion_checkpoint( ckpt_file, text_encoder1, text_encoder2, unet, epoch_no, global_step, ckpt_info, vae, logit_scale, save_dtype, ) def diffusers_saver(out_dir): raise NotImplementedError("diffusers_saver is not implemented") train_util.save_sd_model_on_train_end_common( args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver ) # epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している # on_epoch_end: Trueならepoch終了時、Falseならstep経過時 def save_sd_model_on_epoch_end_or_stepwise( args: argparse.Namespace, on_epoch_end: bool, accelerator, src_path, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, num_train_epochs: int, global_step: int, text_encoder1, text_encoder2, unet, vae, logit_scale, ckpt_info, ): def sd_saver(ckpt_file, epoch_no, global_step): sdxl_model_util.save_stable_diffusion_checkpoint( ckpt_file, text_encoder1, text_encoder2, unet, epoch_no, global_step, ckpt_info, vae, logit_scale, save_dtype, ) def diffusers_saver(out_dir): raise NotImplementedError("diffusers_saver is not implemented") train_util.save_sd_model_on_epoch_end_or_stepwise_common( args, on_epoch_end, accelerator, save_stable_diffusion_format, use_safetensors, epoch, num_train_epochs, global_step, sd_saver, diffusers_saver, ) # TextEncoderの出力をキャッシュする # weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる def cache_text_encoder_outputs(args, accelerator, tokenizers, text_encoders, dataset, weight_dtype): print("caching text encoder outputs") tokenizer1, tokenizer2 = tokenizers text_encoder1, text_encoder2 = text_encoders text_encoder1.to(accelerator.device) text_encoder2.to(accelerator.device) if weight_dtype is not None: text_encoder1.to(dtype=weight_dtype) text_encoder2.to(dtype=weight_dtype) text_encoder1_cache = {} text_encoder2_cache = {} for batch in tqdm(dataset): input_ids1_batch = batch["input_ids"].to(accelerator.device) input_ids2_batch = batch["input_ids2"].to(accelerator.device) # split batch to avoid OOM # TODO specify batch size by args for input_id1, input_id2 in zip(input_ids1_batch.split(1), input_ids2_batch.split(1)): # remove input_ids already in cache input_id1_cache_key = tuple(input_id1.flatten().tolist()) input_id2_cache_key = tuple(input_id2.flatten().tolist()) if input_id1_cache_key in text_encoder1_cache: assert input_id2_cache_key in text_encoder2_cache continue with torch.no_grad(): encoder_hidden_states1, encoder_hidden_states2, pool2 = get_hidden_states( args, input_id1, input_id2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, None if not args.full_fp16 else weight_dtype, ) encoder_hidden_states1 = encoder_hidden_states1.detach().to("cpu").squeeze(0) # n*75+2,768 encoder_hidden_states2 = encoder_hidden_states2.detach().to("cpu").squeeze(0) # n*75+2,1280 pool2 = pool2.detach().to("cpu").squeeze(0) # 1280 text_encoder1_cache[input_id1_cache_key] = encoder_hidden_states1 text_encoder2_cache[input_id2_cache_key] = (encoder_hidden_states2, pool2) return text_encoder1_cache, text_encoder2_cache def add_sdxl_training_arguments(parser: argparse.ArgumentParser): parser.add_argument( "--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする" ) def verify_sdxl_training_args(args: argparse.Namespace): assert ( not args.v2 and not args.v_parameterization ), "v2 or v_parameterization cannot be enabled in SDXL training / SDXL学習ではv2とv_parameterizationを有効にすることはできません" if args.clip_skip is not None: print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません") if args.multires_noise_iterations: print( f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります" ) else: if args.noise_offset is None: args.noise_offset = DEFAULT_NOISE_OFFSET elif args.noise_offset != DEFAULT_NOISE_OFFSET: print( f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています" ) print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました") assert ( not hasattr(args, "weighted_captions") or not args.weighted_captions ), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません" def sample_images(*args, **kwargs): return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)