import urllib.request import fitz import re import openai import os from semantic_search import SemanticSearch recommender = SemanticSearch() def download_pdf(url, output_path): urllib.request.urlretrieve(url, output_path) def preprocess(text): text = text.replace('\n', ' ') text = re.sub('\s+', ' ', text) return text # converts pdf to text def pdf_to_text(path, start_page=1, end_page=None): doc = fitz.open(path) total_pages = doc.page_count if end_page is None: end_page = total_pages text_list = [] for i in range(start_page-1, end_page): text = doc.load_page(i).get_text("text") text = preprocess(text) text_list.append(text) doc.close() return text_list # converts a text into a list of chunks def text_to_chunks(texts, word_length=150, start_page=1, file_number=1): filtered_texts = [''.join(char for char in text if ord(char) < 128) for text in texts] text_toks = [t.split(' ') for t in filtered_texts] chunks = [] for idx, words in enumerate(text_toks): for i in range(0, len(words), word_length): chunk = words[i:i+word_length] if (i+word_length) > len(words) and (len(chunk) < word_length) and ( len(text_toks) != (idx+1)): text_toks[idx+1] = chunk + text_toks[idx+1] continue chunk = ' '.join(chunk).strip() chunk = f'[PDF no. {file_number}] [Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' chunks.append(chunk) # print("chunks == " + str(chunks)) return chunks # merges a list of pdfs into a list of chunks and fits the recommender def load_recommender(paths, start_page=1): global recommender texts = [] chunks = [] for idx, path in enumerate(paths): chunks += text_to_chunks(pdf_to_text(path, start_page=start_page), start_page=start_page, file_number=idx+1) # print("chunks == " + str(chunks)) recommender.fit(chunks) return 'Corpus Loaded.' # calls the OpenAI API to generate a response for the given query def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"): openai.api_key = openAI_key temperature=0.7 max_tokens=256 top_p=1 frequency_penalty=0 presence_penalty=0 if model == "text-davinci-003": completions = openai.Completion.create( engine=model, prompt=prompt, max_tokens=max_tokens, n=1, stop=None, temperature=temperature, ) message = completions.choices[0].text else: message = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "assistant", "content": "Here is some initial assistant message."}, {"role": "user", "content": prompt} ], temperature=.3, max_tokens=max_tokens, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, ).choices[0].message['content'] return message # constructs the prompt for the given query def construct_prompt(question): topn_chunks = recommender(question) prompt = 'search results:\n\n' for c in topn_chunks: prompt += c + '\n\n' prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ "Cite each reference using [PDF Number][Page Number] notation. "\ "Only answer what is asked. The answer should be short and concise. \n\nQuery: " prompt += f"{question}\nAnswer:" return prompt # main function that is called when the user clicks the submit button, generates an answer for the query def question_answer(chat_history, url, files, question, openAI_key, model): try: if files == None: files = [] if openAI_key.strip()=='': return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys' if url.strip() == '' and files == []: return '[ERROR]: Both URL and PDF is empty. Provide at least one.' if url.strip() != '' and files is not []: return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).' if model is None or model =='': return '[ERROR]: You have not selected any model. Please choose an LLM model.' if url.strip() != '': glob_url = url download_pdf(glob_url, 'corpus.pdf') load_recommender('corpus.pdf') else: print(files) filenames = [] for file in files: old_file_name = file.name file_name = file.name file_name = file_name[:-12] + file_name[-4:] os.rename(old_file_name, file_name) filenames.append(file_name) load_recommender(filenames) if question.strip() == '': return '[ERROR]: Question field is empty' prompt = construct_prompt(question) answer = generate_text(openAI_key, prompt, model) chat_history.append([question, answer]) return chat_history except openai.error.InvalidRequestError as e: return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'