Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,121 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import duckdb
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from httpx import Client
|
| 5 |
+
from huggingface_hub import HfApi
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 8 |
+
import spaces
|
| 9 |
+
from llama_cpp import Llama
|
| 10 |
|
| 11 |
+
|
| 12 |
+
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
|
| 13 |
+
headers = {
|
| 14 |
+
"Accept" : "application/json",
|
| 15 |
+
"Content-Type": "application/json"
|
| 16 |
+
}
|
| 17 |
+
client = Client(headers=headers)
|
| 18 |
+
api = HfApi()
|
| 19 |
+
llama = Llama(
|
| 20 |
+
model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
|
| 21 |
+
n_ctx=2048,
|
| 22 |
+
n_gpu_layers=50
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
@spaces.GPU
|
| 26 |
+
def generate_sql(prompt):
|
| 27 |
+
# pred = pipe(prompt, max_length=1000)
|
| 28 |
+
# return pred[0]["generated_text"]
|
| 29 |
+
pred = llama(prompt, temperature=0.1, max_tokens=1000)
|
| 30 |
+
return pred["choices"][0]["text"]
|
| 31 |
+
|
| 32 |
+
def get_first_parquet(dataset: str):
|
| 33 |
+
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
|
| 34 |
+
return resp.json()["parquet_files"][0]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def text2sql(dataset_name, query_input):
|
| 38 |
+
print(f"start text2sql for {dataset_name}")
|
| 39 |
+
try:
|
| 40 |
+
first_parquet = get_first_parquet(dataset_name)
|
| 41 |
+
except Exception as error:
|
| 42 |
+
return {
|
| 43 |
+
schema_output: "",
|
| 44 |
+
prompt_output: "",
|
| 45 |
+
query_output: "",
|
| 46 |
+
df:pd.DataFrame([{"error": f"β Could not get dataset schema. {error=}"}])
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
first_parquet_url = first_parquet["url"]
|
| 50 |
+
print(f"getting schema from {first_parquet_url}")
|
| 51 |
+
con = duckdb.connect()
|
| 52 |
+
con.execute("INSTALL 'httpfs'; LOAD httpfs;")
|
| 53 |
+
# could get from Parquet instead?
|
| 54 |
+
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
|
| 55 |
+
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
|
| 56 |
+
ddl_create = result.iloc[0,0]
|
| 57 |
+
|
| 58 |
+
text = f"""### Instruction:
|
| 59 |
+
Your task is to generate valid duckdb SQL to answer the following question.
|
| 60 |
+
|
| 61 |
+
### Input:
|
| 62 |
+
Here is the database schema that the SQL query will run on:
|
| 63 |
+
{ddl_create}
|
| 64 |
+
|
| 65 |
+
### Question:
|
| 66 |
+
{query_input}
|
| 67 |
+
|
| 68 |
+
### Response (use duckdb shorthand if possible):
|
| 69 |
+
"""
|
| 70 |
+
try:
|
| 71 |
+
sql_output = generate_sql(text)
|
| 72 |
+
except Exception as error:
|
| 73 |
+
return {
|
| 74 |
+
schema_output: ddl_create,
|
| 75 |
+
prompt_output: text,
|
| 76 |
+
query_output: "",
|
| 77 |
+
df:pd.DataFrame([{"error": f"β Unable to get the SQL query based on the text. {error=}"}])
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
# Should be replaced by the prompt but not working
|
| 81 |
+
sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'")
|
| 82 |
+
try:
|
| 83 |
+
query_result = con.sql(sql_output).df()
|
| 84 |
+
except Exception as error:
|
| 85 |
+
query_result = pd.DataFrame([{"error": f"β Could not execute SQL query {error=}"}])
|
| 86 |
+
finally:
|
| 87 |
+
con.close()
|
| 88 |
+
return {
|
| 89 |
+
schema_output: ddl_create,
|
| 90 |
+
prompt_output: text,
|
| 91 |
+
query_output:sql_output,
|
| 92 |
+
df:query_result
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
with gr.Blocks() as demo:
|
| 97 |
+
gr.Markdown("# π« Generate SQL queries based on a given text for your Hugging Face Dataset π«")
|
| 98 |
+
dataset_name = HuggingfaceHubSearch(
|
| 99 |
+
label="Hub Dataset ID",
|
| 100 |
+
placeholder="Search for dataset id on Huggingface",
|
| 101 |
+
search_type="dataset",
|
| 102 |
+
value="jamescalam/world-cities-geo",
|
| 103 |
+
)
|
| 104 |
+
# dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name")
|
| 105 |
+
query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data")
|
| 106 |
+
examples = [
|
| 107 |
+
["Cities from Albania country"],
|
| 108 |
+
["The continent with the most number of countries"],
|
| 109 |
+
["Cities that start with 'A'"],
|
| 110 |
+
["Cities by region"],
|
| 111 |
+
]
|
| 112 |
+
gr.Examples(examples=examples, inputs=[query_input],outputs=[])
|
| 113 |
+
btn = gr.Button("Generate SQL")
|
| 114 |
+
query_output = gr.Textbox(label="Output SQL", interactive= False)
|
| 115 |
+
df = gr.DataFrame(datatype="markdown")
|
| 116 |
+
with gr.Accordion("Open for prompt details", open=False):
|
| 117 |
+
#with gr.Column(scale=1, min_width=600):
|
| 118 |
+
schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False)
|
| 119 |
+
prompt_output = gr.Textbox(label="Generated prompt", interactive= False)
|
| 120 |
+
btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df])
|
| 121 |
+
demo.launch(debug=True)
|