thisispaul commited on
Commit
e60265c
Β·
verified Β·
1 Parent(s): be0669d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -3
app.py CHANGED
@@ -1,4 +1,121 @@
1
- import streamlit as st
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import duckdb
3
+ import gradio as gr
4
+ from httpx import Client
5
+ from huggingface_hub import HfApi
6
+ import pandas as pd
7
+ from gradio_huggingfacehub_search import HuggingfaceHubSearch
8
+ import spaces
9
+ from llama_cpp import Llama
10
 
11
+
12
+ BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
13
+ headers = {
14
+ "Accept" : "application/json",
15
+ "Content-Type": "application/json"
16
+ }
17
+ client = Client(headers=headers)
18
+ api = HfApi()
19
+ llama = Llama(
20
+ model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
21
+ n_ctx=2048,
22
+ n_gpu_layers=50
23
+ )
24
+
25
+ @spaces.GPU
26
+ def generate_sql(prompt):
27
+ # pred = pipe(prompt, max_length=1000)
28
+ # return pred[0]["generated_text"]
29
+ pred = llama(prompt, temperature=0.1, max_tokens=1000)
30
+ return pred["choices"][0]["text"]
31
+
32
+ def get_first_parquet(dataset: str):
33
+ resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
34
+ return resp.json()["parquet_files"][0]
35
+
36
+
37
+ def text2sql(dataset_name, query_input):
38
+ print(f"start text2sql for {dataset_name}")
39
+ try:
40
+ first_parquet = get_first_parquet(dataset_name)
41
+ except Exception as error:
42
+ return {
43
+ schema_output: "",
44
+ prompt_output: "",
45
+ query_output: "",
46
+ df:pd.DataFrame([{"error": f"❌ Could not get dataset schema. {error=}"}])
47
+ }
48
+
49
+ first_parquet_url = first_parquet["url"]
50
+ print(f"getting schema from {first_parquet_url}")
51
+ con = duckdb.connect()
52
+ con.execute("INSTALL 'httpfs'; LOAD httpfs;")
53
+ # could get from Parquet instead?
54
+ con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
55
+ result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
56
+ ddl_create = result.iloc[0,0]
57
+
58
+ text = f"""### Instruction:
59
+ Your task is to generate valid duckdb SQL to answer the following question.
60
+
61
+ ### Input:
62
+ Here is the database schema that the SQL query will run on:
63
+ {ddl_create}
64
+
65
+ ### Question:
66
+ {query_input}
67
+
68
+ ### Response (use duckdb shorthand if possible):
69
+ """
70
+ try:
71
+ sql_output = generate_sql(text)
72
+ except Exception as error:
73
+ return {
74
+ schema_output: ddl_create,
75
+ prompt_output: text,
76
+ query_output: "",
77
+ df:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {error=}"}])
78
+ }
79
+
80
+ # Should be replaced by the prompt but not working
81
+ sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'")
82
+ try:
83
+ query_result = con.sql(sql_output).df()
84
+ except Exception as error:
85
+ query_result = pd.DataFrame([{"error": f"❌ Could not execute SQL query {error=}"}])
86
+ finally:
87
+ con.close()
88
+ return {
89
+ schema_output: ddl_create,
90
+ prompt_output: text,
91
+ query_output:sql_output,
92
+ df:query_result
93
+ }
94
+
95
+
96
+ with gr.Blocks() as demo:
97
+ gr.Markdown("# πŸ’« Generate SQL queries based on a given text for your Hugging Face Dataset πŸ’«")
98
+ dataset_name = HuggingfaceHubSearch(
99
+ label="Hub Dataset ID",
100
+ placeholder="Search for dataset id on Huggingface",
101
+ search_type="dataset",
102
+ value="jamescalam/world-cities-geo",
103
+ )
104
+ # dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name")
105
+ query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data")
106
+ examples = [
107
+ ["Cities from Albania country"],
108
+ ["The continent with the most number of countries"],
109
+ ["Cities that start with 'A'"],
110
+ ["Cities by region"],
111
+ ]
112
+ gr.Examples(examples=examples, inputs=[query_input],outputs=[])
113
+ btn = gr.Button("Generate SQL")
114
+ query_output = gr.Textbox(label="Output SQL", interactive= False)
115
+ df = gr.DataFrame(datatype="markdown")
116
+ with gr.Accordion("Open for prompt details", open=False):
117
+ #with gr.Column(scale=1, min_width=600):
118
+ schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False)
119
+ prompt_output = gr.Textbox(label="Generated prompt", interactive= False)
120
+ btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df])
121
+ demo.launch(debug=True)