import gradio as gr from transformers import GPT2Tokenizer import os os.system( "pip3 install thirdai-0.7.18+a1506df-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" ) import importlib import site importlib.reload(site) from thirdai import bolt, licensing licensing.activate("7511CC-0E24D7-69439D-5D6CBA-33AAFD-V3") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = bolt.GenerativeModel.load("./generative.model") def generate(prompt): prompt = tokenizer.encode(prompt) stream = model.streaming_generation( input_tokens=prompt, prediction_chunk_size=2, max_predictions=80, beam_width=3, ) for res in stream: yield tokenizer.decode(res) with gr.Blocks() as demo: output = gr.TextArea(label="Output") prompt = gr.Textbox( label="Prompt", ) prompt.submit(generate, inputs=[prompt], outputs=[output]) btn = gr.Button(value="Generate") btn.click(generate, inputs=[prompt], outputs=[output]) gr.ClearButton(components=[prompt, output]) if __name__ == "__main__": demo.queue() demo.launch()