import subprocess import sys import gradio as gr from model import llm_chain_response, get_response_value from process_documents import create_db_from_files !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes llm_chain = llm_chain_response() def chat_with_mistral(user_input): if not user_input: return "The message is not be empty." response = llm_chain.invoke({"query": user_input}) print(response) print("---------------Response--------------") print(get_response_value(response["result"])) return get_response_value(response["result"]) def main(): # Initialize the database create_db_from_files() # Set up and launch the Gradio interface iface = gr.Interface( fn=chat_with_mistral, inputs=gr.components.Textbox(label="Enter Your Message"), outputs=gr.components.Markdown(label="ChatbotResponse"), title="Resvu AI Chatbot", description="Interact with the Resvu API via this chatbot. Enter a message and get a response.", examples=["Hi, how are you", "Who are you?", "What services do you offer?", "How can I find out about upcoming community events?"], allow_flagging="never" ) iface.launch() if __name__ == "__main__": main()