Initial file upload
Browse files- app.py +36 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the YOLOv8 model
|
7 |
+
model = YOLO("./model/best.pt")
|
8 |
+
|
9 |
+
def detect_emotion(image):
|
10 |
+
"""
|
11 |
+
Perform YOLO8 inference on the uploaded image.
|
12 |
+
:param image: Input image from the Gradio interface
|
13 |
+
:return: Annotated image with bounding boxes and emotion labels
|
14 |
+
"""
|
15 |
+
# Convert PIL image to OpenCV format
|
16 |
+
image = np.array(image)
|
17 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
18 |
+
|
19 |
+
# Perform inference
|
20 |
+
results = model(image)
|
21 |
+
|
22 |
+
# Annotate the image with predictions
|
23 |
+
annotated_image = results[0].plot()
|
24 |
+
|
25 |
+
# Convert OpenCV BGR image back to RGB for display
|
26 |
+
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
27 |
+
return annotated_image
|
28 |
+
|
29 |
+
# Create Gradio interface
|
30 |
+
gr.Interface(
|
31 |
+
fn=detect_emotion,
|
32 |
+
inputs=gr.Image(type="pil"),
|
33 |
+
outputs=gr.Image(type="numpy"),
|
34 |
+
title="YOLO8 Object Detection",
|
35 |
+
description="Upload an image, and the model will detect the object with bounding boxes."
|
36 |
+
).launch(share=True) # Added share=True to expose a public link
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
cv2
|
4 |
+
numpy
|