import numpy as np
import gdown
import gc
import os
import random
import time
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torch import nn, optim
import torch.nn.functional as F
from torchvision import transforms
from basicsr.archs.arch_util import to_2tuple, trunc_normal_
from einops import rearrange
import math

class ChannelAttention(nn.Module):
    """Channel attention used in RCAN.
    Args:
        num_feat (int): Channel number of intermediate features.
        squeeze_factor (int): Channel squeeze factor. Default: 16.
    """

    def __init__(self, num_feat, squeeze_factor=16):
        super(ChannelAttention, self).__init__()
        self.attention = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
            nn.Sigmoid())

    def forward(self, x):
        y = self.attention(x)
        return x * y


class CAB(nn.Module):

    def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
        super(CAB, self).__init__()

        self.cab = nn.Sequential(
            nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
            nn.GELU(),
            nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
            ChannelAttention(num_feat, squeeze_factor)
            )

    def forward(self, x):
        return self.cab(x)

def window_partition(x, window_size):
    """
    Args:
        x: (b, h, w, c)
        window_size (int): window size

    Returns:
        windows: (num_windows*b, window_size, window_size, c)
    """
    b, h, w, c = x.shape
    x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
    return windows

def window_reverse(windows, window_size, h, w):
    """
    Args:
        windows: (num_windows*b, window_size, window_size, c)
        window_size (int): Window size
        h (int): Height of image
        w (int): Width of image

    Returns:
        x: (b, h, w, c)
    """
    
    b = int(windows.shape[0] / (h * w / window_size / window_size))
    x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
    return x



class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)

        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, rpi, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*b, n, c)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        b_, n, c = x.shape
        qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nw = mask.shape[0]
            attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, n, n)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).

    From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Mlp(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class OCAB(nn.Module):
    # overlapping cross-attention block

    def __init__(self, dim,
                input_resolution,
                window_size,
                overlap_ratio,
                num_heads,
                qkv_bias=True,
                qk_scale=None,
                mlp_ratio=2,
                norm_layer=nn.LayerNorm
                ):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.overlap_win_size = int(window_size * overlap_ratio) + window_size

        self.norm1 = norm_layer(dim)
        self.qkv = nn.Linear(dim, dim * 3,  bias=qkv_bias)
        self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2)

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

        self.proj = nn.Linear(dim,dim)

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)

    def forward(self, x, x_size, rpi):
        h, w = x_size
        b, _, c = x.shape

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, w
        q = qkv[0].permute(0, 2, 3, 1) # b, h, w, c
        kv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w

        # partition windows
        q_windows = window_partition(q, self.window_size)  # nw*b, window_size, window_size, c
        q_windows = q_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c

        kv_windows = self.unfold(kv) # b, c*w*w, nw
        kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() # 2, nw*b, ow*ow, c
        k_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, c

        b_, nq, _ = q_windows.shape
        _, n, _ = k_windows.shape
        d = self.dim // self.num_heads
        q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, nq, d
        k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d
        v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1)  # ws*ws, wse*wse, nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, ws*ws, wse*wse
        attn = attn + relative_position_bias.unsqueeze(0)

        attn = self.softmax(attn)
        attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
        x = window_reverse(attn_windows, self.window_size, h, w)  # b h w c
        x = x.view(b, h * w, self.dim)

        x = self.proj(x) + shortcut

        x = x + self.mlp(self.norm2(x))
        return x
class HAB(nn.Module):
    r""" Hybrid Attention Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 compress_ratio=3,
                 squeeze_factor=30,
                 conv_scale=0.01,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)

        self.conv_scale = conv_scale
        self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, x_size, rpi_sa, attn_mask):
        h, w = x_size
        b, _, c = x.shape
        # assert seq_len == h * w, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        # Conv_X
        conv_x = self.conv_block(x.permute(0, 3, 1, 2))
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = attn_mask
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nw*b, window_size, window_size, c
        x_windows = x_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
        shifted_x = window_reverse(attn_windows, self.window_size, h, w)  # b h' w' c

        # reverse cyclic shift
        if self.shift_size > 0:
            attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            attn_x = shifted_x
        attn_x = attn_x.view(b, h * w, c)

        # FFN
        x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x
class AttenBlocks(nn.Module):
    """ A series of attention blocks for one RHAG.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 compress_ratio,
                 squeeze_factor,
                 conv_scale,
                 overlap_ratio,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            HAB(
                dim=dim,
                input_resolution=input_resolution,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor,
                conv_scale=conv_scale,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # OCAB
        self.overlap_attn = OCAB(
                            dim=dim,
                            input_resolution=input_resolution,
                            window_size=window_size,
                            overlap_ratio=overlap_ratio,
                            num_heads=num_heads,
                            qkv_bias=qkv_bias,
                            qk_scale=qk_scale,
                            mlp_ratio=mlp_ratio,
                            norm_layer=norm_layer
                            )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size, params):
        for blk in self.blocks:
            x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])

        x = self.overlap_attn(x, x_size, params['rpi_oca'])

        if self.downsample is not None:
            x = self.downsample(x)
        return x


class RHAG(nn.Module):
    """Residual Hybrid Attention Group (RHAG).

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        img_size: Input image size.
        patch_size: Patch size.
        resi_connection: The convolutional block before residual connection.
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 compress_ratio,
                 squeeze_factor,
                 conv_scale,
                 overlap_ratio,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False,
                 img_size=224,
                 patch_size=4,
                 resi_connection='1conv'):
        super(RHAG, self).__init__()

        self.dim = dim
        self.input_resolution = input_resolution

        self.residual_group = AttenBlocks(
            dim=dim,
            input_resolution=input_resolution,
            depth=depth,
            num_heads=num_heads,
            window_size=window_size,
            compress_ratio=compress_ratio,
            squeeze_factor=squeeze_factor,
            conv_scale=conv_scale,
            overlap_ratio=overlap_ratio,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop=drop,
            attn_drop=attn_drop,
            drop_path=drop_path,
            norm_layer=norm_layer,
            downsample=downsample,
            use_checkpoint=use_checkpoint)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv = nn.Identity()

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

    def forward(self, x, x_size, params):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # b Ph*Pw c
        if self.norm is not None:
            x = self.norm(x)
        return x


class PatchUnEmbed(nn.Module):
    r""" Image to Patch Unembedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])  # b Ph*Pw c
        return x



class Upsample(nn.Sequential):
    """Upsample module.

    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)

class HAT(nn.Module):
    r""" Hybrid Attention Transformer
        A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`.
        Some codes are based on SwinIR.
    Args:
        img_size (int | tuple(int)): Input image size. Default 64
        patch_size (int | tuple(int)): Patch size. Default: 1
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
        upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
        img_range: Image range. 1. or 255.
        upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(self,
                 img_size=64,
                 patch_size=1,
                 in_chans=3,
                 embed_dim=96,
                 depths=(6, 6, 6, 6),
                 num_heads=(6, 6, 6, 6),
                 window_size=7,
                 compress_ratio=3,
                 squeeze_factor=30,
                 conv_scale=0.01,
                 overlap_ratio=0.5,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 use_checkpoint=False,
                 upscale=2,
                 img_range=1.,
                 upsampler='',
                 resi_connection='1conv',
                 **kwargs):
        super(HAT, self).__init__()

        self.window_size = window_size
        self.shift_size = window_size // 2
        self.overlap_ratio = overlap_ratio

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # relative position index
        relative_position_index_SA = self.calculate_rpi_sa()
        relative_position_index_OCA = self.calculate_rpi_oca()
        self.register_buffer('relative_position_index_SA', relative_position_index_SA)
        self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)

        # ------------------------- 1, shallow feature extraction ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, deep feature extraction ------------------------- #
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # merge non-overlapping patches into image
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build Residual Hybrid Attention Groups (RHAG)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RHAG(
                dim=embed_dim,
                input_resolution=(patches_resolution[0], patches_resolution[1]),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor,
                conv_scale=conv_scale,
                overlap_ratio=overlap_ratio,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results
                norm_layer=norm_layer,
                downsample=None,
                use_checkpoint=use_checkpoint,
                img_size=img_size,
                patch_size=patch_size,
                resi_connection=resi_connection)
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv_after_body = nn.Identity()

        # ------------------------- 3, high quality image reconstruction ------------------------- #
        if self.upsampler == 'pixelshuffle':
            # for classical SR
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def calculate_rpi_sa(self):
        # calculate relative position index for SA
        coords_h = torch.arange(self.window_size)
        coords_w = torch.arange(self.window_size)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size - 1
        relative_coords[:, :, 0] *= 2 * self.window_size - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        return relative_position_index

    def calculate_rpi_oca(self):
        # calculate relative position index for OCA
        window_size_ori = self.window_size
        window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)

        coords_h = torch.arange(window_size_ori)
        coords_w = torch.arange(window_size_ori)
        coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, ws, ws
        coords_ori_flatten = torch.flatten(coords_ori, 1)  # 2, ws*ws

        coords_h = torch.arange(window_size_ext)
        coords_w = torch.arange(window_size_ext)
        coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, wse, wse
        coords_ext_flatten = torch.flatten(coords_ext, 1)  # 2, wse*wse

        relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]   # 2, ws*ws, wse*wse

        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # ws*ws, wse*wse, 2
        relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1

        relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
        relative_position_index = relative_coords.sum(-1)
        return relative_position_index

    def calculate_mask(self, x_size):
        # calculate attention mask for SW-MSA
        h, w = x_size
        img_mask = torch.zeros((1, h, w, 1))  # 1 h w 1
        h_slices = (slice(0, -self.window_size), slice(-self.window_size,
                                                       -self.shift_size), slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size), slice(-self.window_size,
                                                       -self.shift_size), slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nw, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])

        # Calculate attention mask and relative position index in advance to speed up inference. 
        # The original code is very time-consuming for large window size.
        attn_mask = self.calculate_mask(x_size).to(x.device)
        params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}

        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size, params)

        x = self.norm(x)  # b seq_len c
        x = self.patch_unembed(x, x_size)

        return x

    def forward(self, x):
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))

        x = x / self.img_range + self.mean

        return x
    
    
# ------------------------------ HYPERPARAMS ------------------------------ #
config = {
    "network_g": {
        "type": "HAT",
        "upscale": 4,
        "in_chans": 3,
        "img_size": 64,
        "window_size": 16,
        "compress_ratio": 3,
        "squeeze_factor": 30,
        "conv_scale": 0.01,
        "overlap_ratio": 0.5,
        "img_range": 1.,
        "depths": [6, 6, 6, 6, 6, 6],
        "embed_dim": 180,
        "num_heads": [6, 6, 6, 6, 6, 6],
        "mlp_ratio": 2,
        "upsampler": 'pixelshuffle',
        "resi_connection": '1conv'
    },
    "train": {
        "ema_decay": 0.999,
        "optim_g": {
            "type": "Adam",
            "lr": 1e-4,
            "weight_decay": 0,
            "betas": [0.9, 0.99]
        },
        "scheduler": {
            "type": "MultiStepLR",
            "milestones": [12, 20, 25, 30],
            "gamma": 0.5
        },
        "total_iter": 30,
        "warmup_iter": -1,
        "pixel_opt": {
            "type": "L1Loss",
            "loss_weight": 1.0,
            "reduction": "mean"
        }
    },
    'tile':{
        'tile_size': 56,
        'tile_pad': 4
    }
    
}

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# DEVICE = torch.device('mps' if torch.backends.mps.is_built() else 'cpu')
print('device', DEVICE)
class Network:
    def __init__(self,config = config, device=DEVICE):
        self.config = config
        self.device = device
        self.model = HAT(
            upscale=self.config['network_g']['upscale'],
            in_chans=self.config['network_g']['in_chans'],
            img_size=self.config['network_g']['img_size'],
            window_size=self.config['network_g']['window_size'],
            compress_ratio=self.config['network_g']['compress_ratio'],
            squeeze_factor=self.config['network_g']['squeeze_factor'],
            conv_scale=self.config['network_g']['conv_scale'],
            overlap_ratio=self.config['network_g']['overlap_ratio'],
            img_range=self.config['network_g']['img_range'],
            depths=self.config['network_g']['depths'],
            embed_dim=self.config['network_g']['embed_dim'],
            num_heads=self.config['network_g']['num_heads'],
            mlp_ratio=self.config['network_g']['mlp_ratio'],
            upsampler=self.config['network_g']['upsampler'],
            resi_connection=self.config['network_g']['resi_connection']
        ).to(self.device)
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.config['train']['optim_g']['lr'], weight_decay=config['train']['optim_g']['weight_decay'],betas=tuple(config['train']['optim_g']['betas']))
    
    def load_network(self, checkpoint_path):

        checkpoint = torch.load(checkpoint_path, map_location=self.device)
        self.model.load_state_dict(checkpoint['model'])
        self.optimizer.load_state_dict(checkpoint['optimizer']) # before create and load scheduler

    def pre_process(self):
        # pad to multiplication of window_size
        window_size = self.config['network_g']['window_size'] * 4
        self.scale = self.config['network_g']['upscale']

        self.mod_pad_h, self.mod_pad_w = 0, 0
        _, _, h, w = self.input_tile.size()

        if h % window_size != 0:
            self.mod_pad_h = window_size - h % window_size
            # Loop to add padding to the height until it's a multiple of window_size
            for i in range(self.mod_pad_h):
                self.input_tile = F.pad(self.input_tile, (0, 0, 0, 1), 'reflect')

        if w % window_size != 0:
            # Loop to add padding to the width until it's a multiple of window_size
            self.mod_pad_w = window_size - w % window_size
            for i in range(self.mod_pad_w):
                self.input_tile = F.pad(self.input_tile, (0, 1, 0, 0), 'reflect')
                             
    def post_process(self):
        _, _, h, w = self.output_tile.size()
        self.output_tile = self.output_tile[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]

    def tile_valid(self, lr_images):
        """
        Process all tiles of an image in a batch and then merge them back into the output image.
        """

        batch, channel, height, width = lr_images.shape
        output_height = height * self.config['network_g']['upscale']
        output_width = width * self.config['network_g']['upscale']
        output_shape = (batch, channel, output_height, output_width)

        # Start with black image for output
        sr_images = lr_images.new_zeros(output_shape)
        tiles_x = math.ceil(width / self.config['tile']['tile_size'])
        tiles_y = math.ceil(height / self.config['tile']['tile_size'])

        tile_list = []

        # Extract all tiles
        for y in range(tiles_y):
            for x in range(tiles_x):
                
                input_start_x = x * self.config['tile']['tile_size']
                input_end_x = min(input_start_x + self.config['tile']['tile_size'], width)
                input_start_y = y * self.config['tile']['tile_size']
                input_end_y = min(input_start_y + self.config['tile']['tile_size'], height)

                input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0)
                input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width)
                input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0)
                input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height)
                
                # Extract tile and add to list
                self.input_tile = lr_images[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
                self.pre_process()
                tile_list.append(self.input_tile.clone())

        output_tiles = []

        # Determine the number of tiles to process per batch
        batch_size = 16  # Adjust based on your specific situation

        for i in range(0, len(tile_list), batch_size):
            # Extract a batch of tiles
            batch = tile_list[i:i + batch_size]
            tile_batch = torch.cat(batch, dim=0)  # This creates a batch of tiles

            # Process the batch through the model
            self.model.eval()
            with torch.no_grad():
                # Ensure that each tile processed by the model returns a 3D tensor (C, H, W)
                output_batch = self.model(tile_batch)

            # Extend the list of processed tiles
            output_tiles.append(output_batch)  # Assuming output_batch is 4D

        # Concatenate along the first dimension to combine all the processed tiles
        output_tile_batch = torch.cat(output_tiles, dim=0)  # This should be 4D now

        
        for y in range(tiles_y):
            for x in range(tiles_x):
                # input tile area on total image
                input_start_x = x * self.config['tile']['tile_size']
                input_end_x = min(input_start_x + self.config['tile']['tile_size'], width)
                input_start_y = y * self.config['tile']['tile_size']
                input_end_y = min(input_start_y + self.config['tile']['tile_size'], height)

                # input tile area on total image with padding
                input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0)
                input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width)
                input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0)
                input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height)

                # input tile dimensions
                input_tile_width = input_end_x - input_start_x
                input_tile_height = input_end_y - input_start_y
                tile_idx = y * tiles_x + x
                
                self.pre_process()
                self.output_tile = output_tile_batch[tile_idx, :, :, :].unsqueeze(0).clone()
                self.post_process()

                # output tile area on total image
                output_start_x = input_start_x * self.config['network_g']['upscale']
                output_end_x = input_end_x * self.config['network_g']['upscale']
                output_start_y = input_start_y * self.config['network_g']['upscale']
                output_end_y = input_end_y * self.config['network_g']['upscale']

                # output tile area without padding
                output_start_x_tile = (input_start_x - input_start_x_pad) * self.config['network_g']['upscale']
                output_end_x_tile = output_start_x_tile + input_tile_width * self.config['network_g']['upscale']
                output_start_y_tile = (input_start_y - input_start_y_pad) * self.config['network_g']['upscale']
                output_end_y_tile = output_start_y_tile + input_tile_height * self.config['network_g']['upscale']
                
                # put tile into output image
                sr_images[:, :, output_start_y:output_end_y,
                            output_start_x:output_end_x] = self.output_tile[:, :, output_start_y_tile:output_end_y_tile,
                                                                       output_start_x_tile:output_end_x_tile]
        
        del self.input_tile, self.output_tile, tile_batch, tile_list, output_tile_batch, output_tiles 
        gc.collect()
        torch.cuda.empty_cache()
        return sr_images
    
    def inference(self, lr_image, hr_image = None, deployment = False):
        """
        - lr_image: torch.Tensor
            3D Tensor (C, H, W)
        - hr_image: torch.Tesnor
            3D Tensor (C, H, W). This parameter is optional, for comparing the model output and the 
            ground-truth high-res image. If used solely for inference, skip this. Default is None/
        """
        lr_image = lr_image.unsqueeze(0).to(self.device)
        
        self.for_inference = True
        with torch.no_grad():
            sr_image = self.tile_valid(lr_image)
        sr_image = torch.clamp(sr_image, 0, 1)
        
        if deployment:
            return sr_image.squeeze(0)
        else:
            lr_image = lr_image.squeeze(0)
            sr_image = sr_image.squeeze(0)
        
            print(">> Size of low-res image:", lr_image.size())
            print(">> Size of super-res image:", sr_image.size())
            if hr_image != None:
                print(">> Size of high-res image:", hr_image.size())
            
            if hr_image != None:
                fig, axes = plt.subplots(1, 3, figsize=(10, 6))
                axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0)))
                axes[0].set_title('Low Resolution')
                axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0)))
                axes[1].set_title('Super Resolution')
                axes[2].imshow(hr_image.cpu().detach().permute((1, 2, 0)))
                axes[2].set_title('High Resolution')
                for ax in axes.flat:
                    ax.axis('off')
            else:
                fig, axes = plt.subplots(1, 2, figsize=(10, 6))
                axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0)))
                axes[0].set_title('Low Resolution')
                axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0)))
                axes[1].set_title('Super Resolution')
                for ax in axes.flat:
                    ax.axis('off')
            
            plt.tight_layout()        
            plt.show()
            return sr_image    
        
def HAT_for_deployment(lr_image, model_path = 'models/HAT/hat_model_checkpoint_best.pth'):
    lr_image = transforms.functional.to_tensor(lr_image)
    hat = Network()
    hat.load_network(model_path)
    t1 = time.time()
    sr_image = hat.inference(lr_image, deployment=True).cpu().numpy()
    t2 = time.time()
    print("Time taken to infer:", t2 - t1)
    # If image is in [C, H, W] format, transpose it to [H, W, C]
    sr_image = np.transpose(sr_image, (1, 2, 0))
    if sr_image.max() <= 1.0:
        sr_image = (sr_image * 255).astype(np.uint8)
    sr_image = Image.fromarray(sr_image)
    return sr_image
    
if __name__ == "__main__":
    import os
    import sys
    # Getting to the true directory
    sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../"))

    # Define the model's file path and the Google Drive link
    model_path = 'models/HAT/hat_model_checkpoint_best.pth'
    gdrive_id = '1LHIUM7YoUDk8cXWzVZhroAcA1xXi-d87'  # Replace with your actual Google Drive file URL

    # Check if the model file exists
    if not os.path.exists(model_path):
        print(f"Model file not found at {model_path}. Downloading from Google Drive...")
        # Ensure the directory exists, as gdown will not automatically create directory paths
        os.makedirs(os.path.dirname(model_path), exist_ok=True)
        # Download the file from Google Drive
        # gdown.download(id=gdrive_id, output=model_path, quiet=False)
    else:
        print(f"Model file found at {model_path}. No need to download.")
    
    image_path = "images/demo.png"
    lr_image = Image.open(image_path)
    # lr_image = transforms.functional.to_tensor(lr_image)

    # hat = Network()
    # hat.load_network(model_path)
    # hat.inference(lr_image)
    print(HAT_for_deployment(lr_image, model_path))