Nguyễn Bá Thiêm
Add streamlit and gdown to requirements.txt
239e299
raw
history blame
55.9 kB
import gdown
# url = 'https://drive.google.com/file/d/1LHIUM7YoUDk8cXWzVZhroAcA1xXi-d87/view?usp=drive_link'
output = 'models/HAT/hat_model_checkpoint_best.pth'
# gdown.download(url, output, quiet=False)
import gc
import os
import random
import time
import wandb
from tqdm import tqdm
import matplotlib.pyplot as plt
from PIL import Image
from skimage.metrics import structural_similarity as ssim
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torchvision import transforms
from torchvision.transforms import Compose
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from basicsr.archs.arch_util import to_2tuple, trunc_normal_
from einops import rearrange
import math
class ChannelAttention(nn.Module):
"""Channel attention used in RCAN.
Args:
num_feat (int): Channel number of intermediate features.
squeeze_factor (int): Channel squeeze factor. Default: 16.
"""
def __init__(self, num_feat, squeeze_factor=16):
super(ChannelAttention, self).__init__()
self.attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
nn.Sigmoid())
def forward(self, x):
y = self.attention(x)
return x * y
class CAB(nn.Module):
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
super(CAB, self).__init__()
self.cab = nn.Sequential(
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
nn.GELU(),
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
ChannelAttention(num_feat, squeeze_factor)
)
def forward(self, x):
return self.cab(x)
def window_partition(x, window_size):
"""
Args:
x: (b, h, w, c)
window_size (int): window size
Returns:
windows: (num_windows*b, window_size, window_size, c)
"""
b, h, w, c = x.shape
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
return windows
def window_reverse(windows, window_size, h, w):
"""
Args:
windows: (num_windows*b, window_size, window_size, c)
window_size (int): Window size
h (int): Height of image
w (int): Width of image
Returns:
x: (b, h, w, c)
"""
b = int(windows.shape[0] / (h * w / window_size / window_size))
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, rpi, mask=None):
"""
Args:
x: input features with shape of (num_windows*b, n, c)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
b_, n, c = x.shape
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nw = mask.shape[0]
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, n, n)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class OCAB(nn.Module):
# overlapping cross-attention block
def __init__(self, dim,
input_resolution,
window_size,
overlap_ratio,
num_heads,
qkv_bias=True,
qk_scale=None,
mlp_ratio=2,
norm_layer=nn.LayerNorm
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.overlap_win_size = int(window_size * overlap_ratio) + window_size
self.norm1 = norm_layer(dim)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2)
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
self.proj = nn.Linear(dim,dim)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)
def forward(self, x, x_size, rpi):
h, w = x_size
b, _, c = x.shape
shortcut = x
x = self.norm1(x)
x = x.view(b, h, w, c)
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, w
q = qkv[0].permute(0, 2, 3, 1) # b, h, w, c
kv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w
# partition windows
q_windows = window_partition(q, self.window_size) # nw*b, window_size, window_size, c
q_windows = q_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c
kv_windows = self.unfold(kv) # b, c*w*w, nw
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() # 2, nw*b, ow*ow, c
k_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, c
b_, nq, _ = q_windows.shape
_, n, _ = k_windows.shape
d = self.dim // self.num_heads
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, nq, d
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1) # ws*ws, wse*wse, nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, ws*ws, wse*wse
attn = attn + relative_position_bias.unsqueeze(0)
attn = self.softmax(attn)
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
x = window_reverse(attn_windows, self.window_size, h, w) # b h w c
x = x.view(b, h * w, self.dim)
x = self.proj(x) + shortcut
x = x + self.mlp(self.norm2(x))
return x
class AttenBlocks(nn.Module):
""" A series of attention blocks for one RHAG.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
window_size,
compress_ratio,
squeeze_factor,
conv_scale,
overlap_ratio,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
HAB(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
compress_ratio=compress_ratio,
squeeze_factor=squeeze_factor,
conv_scale=conv_scale,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer) for i in range(depth)
])
# OCAB
self.overlap_attn = OCAB(
dim=dim,
input_resolution=input_resolution,
window_size=window_size,
overlap_ratio=overlap_ratio,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, x_size, params):
for blk in self.blocks:
x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])
x = self.overlap_attn(x, x_size, params['rpi_oca'])
if self.downsample is not None:
x = self.downsample(x)
return x
class RHAG(nn.Module):
"""Residual Hybrid Attention Group (RHAG).
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
img_size: Input image size.
patch_size: Patch size.
resi_connection: The convolutional block before residual connection.
"""
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
window_size,
compress_ratio,
squeeze_factor,
conv_scale,
overlap_ratio,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
img_size=224,
patch_size=4,
resi_connection='1conv'):
super(RHAG, self).__init__()
self.dim = dim
self.input_resolution = input_resolution
self.residual_group = AttenBlocks(
dim=dim,
input_resolution=input_resolution,
depth=depth,
num_heads=num_heads,
window_size=window_size,
compress_ratio=compress_ratio,
squeeze_factor=squeeze_factor,
conv_scale=conv_scale,
overlap_ratio=overlap_ratio,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path,
norm_layer=norm_layer,
downsample=downsample,
use_checkpoint=use_checkpoint)
if resi_connection == '1conv':
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
elif resi_connection == 'identity':
self.conv = nn.Identity()
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
self.patch_unembed = PatchUnEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
def forward(self, x, x_size, params):
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
if self.norm is not None:
x = self.norm(x)
return x
class PatchUnEmbed(nn.Module):
r""" Image to Patch Unembedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
def forward(self, x, x_size):
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
return x
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class HAT(nn.Module):
r""" Hybrid Attention Transformer
A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`.
Some codes are based on SwinIR.
Args:
img_size (int | tuple(int)): Input image size. Default 64
patch_size (int | tuple(int)): Patch size. Default: 1
in_chans (int): Number of input image channels. Default: 3
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
img_range: Image range. 1. or 255.
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
"""
def __init__(self,
img_size=64,
patch_size=1,
in_chans=3,
embed_dim=96,
depths=(6, 6, 6, 6),
num_heads=(6, 6, 6, 6),
window_size=7,
compress_ratio=3,
squeeze_factor=30,
conv_scale=0.01,
overlap_ratio=0.5,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
upscale=2,
img_range=1.,
upsampler='',
resi_connection='1conv',
**kwargs):
super(HAT, self).__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.overlap_ratio = overlap_ratio
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
self.img_range = img_range
if in_chans == 3:
rgb_mean = (0.4488, 0.4371, 0.4040)
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
else:
self.mean = torch.zeros(1, 1, 1, 1)
self.upscale = upscale
self.upsampler = upsampler
# relative position index
relative_position_index_SA = self.calculate_rpi_sa()
relative_position_index_OCA = self.calculate_rpi_oca()
self.register_buffer('relative_position_index_SA', relative_position_index_SA)
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)
# ------------------------- 1, shallow feature extraction ------------------------- #
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
# ------------------------- 2, deep feature extraction ------------------------- #
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = embed_dim
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=embed_dim,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# merge non-overlapping patches into image
self.patch_unembed = PatchUnEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=embed_dim,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build Residual Hybrid Attention Groups (RHAG)
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = RHAG(
dim=embed_dim,
input_resolution=(patches_resolution[0], patches_resolution[1]),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
compress_ratio=compress_ratio,
squeeze_factor=squeeze_factor,
conv_scale=conv_scale,
overlap_ratio=overlap_ratio,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
downsample=None,
use_checkpoint=use_checkpoint,
img_size=img_size,
patch_size=patch_size,
resi_connection=resi_connection)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
# build the last conv layer in deep feature extraction
if resi_connection == '1conv':
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
elif resi_connection == 'identity':
self.conv_after_body = nn.Identity()
# ------------------------- 3, high quality image reconstruction ------------------------- #
if self.upsampler == 'pixelshuffle':
# for classical SR
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def calculate_rpi_sa(self):
# calculate relative position index for SA
coords_h = torch.arange(self.window_size)
coords_w = torch.arange(self.window_size)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size - 1
relative_coords[:, :, 0] *= 2 * self.window_size - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
return relative_position_index
def calculate_rpi_oca(self):
# calculate relative position index for OCA
window_size_ori = self.window_size
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)
coords_h = torch.arange(window_size_ori)
coords_w = torch.arange(window_size_ori)
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, ws, ws
coords_ori_flatten = torch.flatten(coords_ori, 1) # 2, ws*ws
coords_h = torch.arange(window_size_ext)
coords_w = torch.arange(window_size_ext)
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, wse, wse
coords_ext_flatten = torch.flatten(coords_ext, 1) # 2, wse*wse
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] # 2, ws*ws, wse*wse
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # ws*ws, wse*wse, 2
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1 # shift to start from 0
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
relative_position_index = relative_coords.sum(-1)
return relative_position_index
def calculate_mask(self, x_size):
# calculate attention mask for SW-MSA
h, w = x_size
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1
h_slices = (slice(0, -self.window_size), slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size), slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x_size = (x.shape[2], x.shape[3])
# Calculate attention mask and relative position index in advance to speed up inference.
# The original code is very time-consuming for large window size.
attn_mask = self.calculate_mask(x_size).to(x.device)
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x, x_size, params)
x = self.norm(x) # b seq_len c
x = self.patch_unembed(x, x_size)
return x
def forward(self, x):
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
if self.upsampler == 'pixelshuffle':
# for classical SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
x = x / self.img_range + self.mean
return x
# ------------------------------ HYPERPARAMS ------------------------------ #
config = {
"network_g": {
"type": "HAT",
"upscale": 4,
"in_chans": 3,
"img_size": 64,
"window_size": 16,
"compress_ratio": 3,
"squeeze_factor": 30,
"conv_scale": 0.01,
"overlap_ratio": 0.5,
"img_range": 1.,
"depths": [6, 6, 6, 6, 6, 6],
"embed_dim": 180,
"num_heads": [6, 6, 6, 6, 6, 6],
"mlp_ratio": 2,
"upsampler": 'pixelshuffle',
"resi_connection": '1conv'
},
"train": {
"ema_decay": 0.999,
"optim_g": {
"type": "Adam",
"lr": 1e-4,
"weight_decay": 0,
"betas": [0.9, 0.99]
},
"scheduler": {
"type": "MultiStepLR",
"milestones": [12, 20, 25, 30],
"gamma": 0.5
},
"total_iter": 30,
"warmup_iter": -1,
"pixel_opt": {
"type": "L1Loss",
"loss_weight": 1.0,
"reduction": "mean"
}
},
'tile':{
'tile_size': 56,
'tile_pad': 4
}
}
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DEVICE
class Network:
def __init__(self, train_dataloader=train_dataloader, valid_dataloader=valid_dataloader,
config = config, device=DEVICE, run_id=None, wandb_mode = False, STOP = float('inf'), save_temp_model = True, train_model_continue = False):
self.config = config
self.model = HAT(
upscale=self.config['network_g']['upscale'],
in_chans=self.config['network_g']['in_chans'],
img_size=self.config['network_g']['img_size'],
window_size=self.config['network_g']['window_size'],
compress_ratio=self.config['network_g']['compress_ratio'],
squeeze_factor=self.config['network_g']['squeeze_factor'],
conv_scale=self.config['network_g']['conv_scale'],
overlap_ratio=self.config['network_g']['overlap_ratio'],
img_range=self.config['network_g']['img_range'],
depths=self.config['network_g']['depths'],
embed_dim=self.config['network_g']['embed_dim'],
num_heads=self.config['network_g']['num_heads'],
mlp_ratio=self.config['network_g']['mlp_ratio'],
upsampler=self.config['network_g']['upsampler'],
resi_connection=self.config['network_g']['resi_connection']
).to(device)
self.device = device
self.STOP = STOP
self.wandb_mode = wandb_mode
self.loss_fn = nn.L1Loss(reduction='mean').to(device)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.config['train']['optim_g']['lr'], weight_decay=config['train']['optim_g']['weight_decay'],betas=tuple(config['train']['optim_g']['betas']))
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, milestones = self.config['train']['scheduler']['milestones'], gamma=self.config['train']['scheduler']['gamma'])
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
self.num_epochs = self.config['train']['total_iter']
self.run_id = run_id
self.save_temp_model = save_temp_model
self.train_model_continue = train_model_continue
self.last_valid_loss = float('inf')
checkpoint_path = output
if self.save_temp_model:
if self.train_model_continue:
# Load the network and other states from the checkpoint
self.start_epoch, train_loss, valid_loss = self.load_network(checkpoint_path)
initial_lr = self.config['train']['optim_g']['lr'] * self.config['train']['scheduler']['gamma'] # Define your initial or desired learning rate
for param_group in self.optimizer.param_groups:
param_group['lr'] = initial_lr # Resetting learning rate
# Recreate the scheduler with the updated optimizer
self.scheduler = optim.lr_scheduler.MultiStepLR(
self.optimizer,
milestones=self.config['train']['scheduler']['milestones'],
gamma=self.config['train']['scheduler']['gamma'],
last_epoch = self.start_epoch - 1 # Ensure to set the last_epoch to continue correctly
)
# Print the updated learning rate and scheduler state
print("Updated Learning Rate is:", self.optimizer.param_groups[0]['lr'])
print(self.scheduler.state_dict())
self.last_valid_loss = valid_loss
# self.num_epochs-= self.start_epoch
print("Previous train loss: ", train_loss)
print("Previous valid loss: ", self.last_valid_loss)
# Resume training notice
print("------------------- Resuming training -------------------")
self.save_network(0, 0, 0, 'temp_model_checkpoint.pth')
def del_model(self):
del self.model
del self.optimizer
del self.scheduler
gc.collect()
torch.cuda.empty_cache()
def pre_process(self):
# pad to multiplication of window_size
window_size = self.config['network_g']['window_size'] * 4
self.scale = self.config['network_g']['upscale']
self.mod_pad_h, self.mod_pad_w = 0, 0
_, _, h, w = self.input_tile.size()
if h % window_size != 0:
self.mod_pad_h = window_size - h % window_size
# Loop to add padding to the height until it's a multiple of window_size
for i in range(self.mod_pad_h):
self.input_tile = F.pad(self.input_tile, (0, 0, 0, 1), 'reflect')
if w % window_size != 0:
# Loop to add padding to the width until it's a multiple of window_size
self.mod_pad_w = window_size - w % window_size
for i in range(self.mod_pad_w):
self.input_tile = F.pad(self.input_tile, (0, 1, 0, 0), 'reflect')
def post_process(self):
_, _, h, w = self.output_tile.size()
self.output_tile = self.output_tile[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
def save_network(self, epoch, train_loss, valid_loss, checkpoint_path):
checkpoint = {
'epoch': epoch,
'train_loss': train_loss,
'valid_loss': valid_loss,
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'learning_rate_scheduler': self.scheduler.state_dict(),
'network': self
}
torch.save(checkpoint, checkpoint_path)
def load_network(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.model = HAT(
upscale=self.config['network_g']['upscale'],
in_chans=self.config['network_g']['in_chans'],
img_size=self.config['network_g']['img_size'],
window_size=self.config['network_g']['window_size'],
compress_ratio=self.config['network_g']['compress_ratio'],
squeeze_factor=self.config['network_g']['squeeze_factor'],
conv_scale=self.config['network_g']['conv_scale'],
overlap_ratio=self.config['network_g']['overlap_ratio'],
img_range=self.config['network_g']['img_range'],
depths=self.config['network_g']['depths'],
embed_dim=self.config['network_g']['embed_dim'],
num_heads=self.config['network_g']['num_heads'],
mlp_ratio=self.config['network_g']['mlp_ratio'],
upsampler=self.config['network_g']['upsampler'],
resi_connection=self.config['network_g']['resi_connection']
).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.config['train']['optim_g']['lr'], weight_decay=config['train']['optim_g']['weight_decay'],betas=tuple(config['train']['optim_g']['betas']))
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer']) # before create and load scheduler
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, milestones = self.config['train']['scheduler']['milestones'], gamma=self.config['train']['scheduler']['gamma'])
self.scheduler.load_state_dict(checkpoint['learning_rate_scheduler'])
return checkpoint['epoch'], checkpoint['train_loss'], checkpoint['valid_loss']
def train_step(self, lr_images, hr_images):
lr_images, hr_images = lr_images.to(self.device), hr_images.to(self.device)
sr_images = self.model(lr_images)
self.optimizer.zero_grad()
loss = self.loss_fn(sr_images, hr_images)
loss.backward()
self.optimizer.step()
# Memory cleanup
del sr_images, lr_images, hr_images
gc.collect()
torch.cuda.empty_cache()
return loss.item()
def valid_step(self, lr_images, hr_images):
lr_images, hr_images = lr_images.to(self.device), hr_images.to(self.device)
sr_images = self.tile_valid(lr_images)
loss = self.loss_fn(sr_images, hr_images)
# Memory cleanup
del sr_images, lr_images, hr_images
gc.collect()
torch.cuda.empty_cache()
return loss.item()
def tile_valid(self, lr_images):
"""
Process all tiles of an image in a batch and then merge them back into the output image.
"""
batch, channel, height, width = lr_images.shape
output_height = height * self.config['network_g']['upscale']
output_width = width * self.config['network_g']['upscale']
output_shape = (batch, channel, output_height, output_width)
# Start with black image for output
sr_images = lr_images.new_zeros(output_shape)
tiles_x = math.ceil(width / self.config['tile']['tile_size'])
tiles_y = math.ceil(height / self.config['tile']['tile_size'])
tile_list = []
# Extract all tiles
for y in range(tiles_y):
for x in range(tiles_x):
input_start_x = x * self.config['tile']['tile_size']
input_end_x = min(input_start_x + self.config['tile']['tile_size'], width)
input_start_y = y * self.config['tile']['tile_size']
input_end_y = min(input_start_y + self.config['tile']['tile_size'], height)
input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0)
input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width)
input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0)
input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height)
# Extract tile and add to list
self.input_tile = lr_images[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
self.pre_process()
tile_list.append(self.input_tile.clone())
output_tiles = []
# Determine the number of tiles to process per batch
batch_size = 16 # Adjust based on your specific situation
for i in range(0, len(tile_list), batch_size):
# Extract a batch of tiles
batch = tile_list[i:i + batch_size]
tile_batch = torch.cat(batch, dim=0) # This creates a batch of tiles
# Process the batch through the model
self.model.eval()
with torch.no_grad():
# Ensure that each tile processed by the model returns a 3D tensor (C, H, W)
output_batch = self.model(tile_batch)
# Extend the list of processed tiles
output_tiles.append(output_batch) # Assuming output_batch is 4D
# Concatenate along the first dimension to combine all the processed tiles
output_tile_batch = torch.cat(output_tiles, dim=0) # This should be 4D now
for y in range(tiles_y):
for x in range(tiles_x):
# input tile area on total image
input_start_x = x * self.config['tile']['tile_size']
input_end_x = min(input_start_x + self.config['tile']['tile_size'], width)
input_start_y = y * self.config['tile']['tile_size']
input_end_y = min(input_start_y + self.config['tile']['tile_size'], height)
# input tile area on total image with padding
input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0)
input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width)
input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0)
input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height)
# input tile dimensions
input_tile_width = input_end_x - input_start_x
input_tile_height = input_end_y - input_start_y
tile_idx = y * tiles_x + x
self.pre_process()
self.output_tile = output_tile_batch[tile_idx, :, :, :].unsqueeze(0).clone()
self.post_process()
# output tile area on total image
output_start_x = input_start_x * self.config['network_g']['upscale']
output_end_x = input_end_x * self.config['network_g']['upscale']
output_start_y = input_start_y * self.config['network_g']['upscale']
output_end_y = input_end_y * self.config['network_g']['upscale']
# output tile area without padding
output_start_x_tile = (input_start_x - input_start_x_pad) * self.config['network_g']['upscale']
output_end_x_tile = output_start_x_tile + input_tile_width * self.config['network_g']['upscale']
output_start_y_tile = (input_start_y - input_start_y_pad) * self.config['network_g']['upscale']
output_end_y_tile = output_start_y_tile + input_tile_height * self.config['network_g']['upscale']
# put tile into output image
sr_images[:, :, output_start_y:output_end_y,
output_start_x:output_end_x] = self.output_tile[:, :, output_start_y_tile:output_end_y_tile,
output_start_x_tile:output_end_x_tile]
del self.input_tile, self.output_tile, tile_batch, tile_list, output_tile_batch, output_tiles
gc.collect()
torch.cuda.empty_cache()
return sr_images
def train_model(self):
if self.wandb_mode:
wandb.init(project='HAT-for-image-sr',
resume='allow',
config= self.config,
id=self.run_id)
wandb.watch(self.model)
if self.train_model_continue:
epoch_lst = range(self.start_epoch, self.num_epochs)
else:
epoch_lst = range(self.num_epochs)
for epoch in epoch_lst:
start1 = time.time()
# ------------------- TRAIN -------------------
if self.save_temp_model:
self.load_network('temp_model_checkpoint.pth')
self.model.train()
train_epoch_loss = 0
stop = 0
for hr_images, lr_images in tqdm(self.train_dataloader, desc=f'Epoch {epoch+1}/{self.num_epochs}'):
if stop == self.STOP:
break
stop+=1
loss = self.train_step(lr_images, hr_images)
train_epoch_loss += loss
if self.wandb_mode:
wandb.log({
'batch_loss': loss,
})
if self.wandb_mode:
wandb.log({
'learning_rate': self.optimizer.param_groups[0]['lr']
})
print("Learning Rate is:", self.optimizer.param_groups[0]['lr'])
self.scheduler.step()
if self.save_temp_model:
self.save_network(epoch, train_epoch_loss, 0, 'temp_model_checkpoint.pth')
print(self.scheduler.state_dict())
self.del_model()
del hr_images
del lr_images
gc.collect()
train_epoch_loss /= len(self.train_dataloader)
end1 = time.time()
# ------------------- VALID -------------------
start2 = time.time()
if self.save_temp_model:
self.load_network('temp_model_checkpoint.pth')
self.model.eval()
with torch.no_grad():
valid_epoch_loss = 0
stop = 0
for hr_images, lr_images in tqdm(self.valid_dataloader, desc=f'Epoch {epoch+1}/{self.num_epochs}'):
if stop == self.STOP:
break
stop+=1
loss = self.valid_step(lr_images, hr_images)
valid_epoch_loss += loss
valid_epoch_loss /= len(self.valid_dataloader)
end2 = time.time()
# ------------------- LOG -------------------
if self.wandb_mode:
wandb.log({
'train_loss': train_epoch_loss,
'valid_loss': valid_epoch_loss,
})
# ------------------- VERBOSE -------------------
print(f'Epoch {epoch+1}/{self.num_epochs} | Train Loss: {train_epoch_loss:.4f} | Valid Loss: {valid_epoch_loss:.4f} | Time train: {end1-start1:.2f}s | Time valid: {end2-start2:.2f}s')
# ------------------- CHECKPOINT -------------------
self.save_network(epoch, train_epoch_loss, valid_epoch_loss, 'model_checkpoint_latest.pth')
if valid_epoch_loss < self.last_valid_loss:
self.last_valid_loss = valid_epoch_loss
self.save_network(epoch, train_epoch_loss, valid_epoch_loss, 'model_checkpoint_best.pth')
print("New best checkpoint saved!")
if self.save_temp_model:
self.del_model()
del hr_images
del lr_images
gc.collect()
if self.wandb_mode:
wandb.finish()
def inference(self, lr_image, hr_image):
"""
- lr_image: torch.Tensor
3D Tensor (C, H, W)
- hr_image: torch.Tesnor
3D Tensor (C, H, W). This parameter is optional, for comparing the model output and the
ground-truth high-res image. If used solely for inference, skip this. Default is None/
"""
lr_image = lr_image.unsqueeze(0).to(self.device)
self.for_inference = True
with torch.no_grad():
sr_image = self.tile_valid(lr_image)
lr_image = lr_image.squeeze(0)
sr_image = sr_image.squeeze(0)
print(">> Size of low-res image:", lr_image.size())
print(">> Size of super-res image:", sr_image.size())
if hr_image != None:
print(">> Size of high-res image:", hr_image.size())
if hr_image != None:
fig, axes = plt.subplots(1, 3, figsize=(10, 6))
axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0)))
axes[0].set_title('Low Resolution')
axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0)))
axes[1].set_title('Super Resolution')
axes[2].imshow(hr_image.cpu().detach().permute((1, 2, 0)))
axes[2].set_title('High Resolution')
for ax in axes.flat:
ax.axis('off')
else:
fig, axes = plt.subplots(1, 2, figsize=(10, 6))
axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0)))
axes[0].set_title('Low Resolution')
axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0)))
axes[1].set_title('Super Resolution')
for ax in axes.flat:
ax.axis('off')
plt.tight_layout()
plt.show()
return sr_image
class TestDataset(Dataset):
def __init__(self, lr_images_path):
super(TestDataset, self).__init__()
# hr_images_list = os.listdir(hr_images_path)
self.lr_images_path = lr_images_path
def __getitem__(self, idx):
lr_image = Image.open(self.lr_image_path)
lr_image = transforms.functional.to_tensor(lr_image)
return lr_image
if __name__ == "__main__":
import os
import sys
# Getting to the Lambda directory
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../"))
image_path = "images/img_003_SRF_4_LR.png"
infer_dataset = TestDataset(images_path=image_path)
# hat = Network(run_id="hat-for-image-sr-" + str(int(1704006834)),config = config, wandb_mode = False, save_temp_model = True, train_model_continue = False) # STOP = 2
# num_params = sum(p.numel() for p in hat.model.parameters() if p.requires_grad)
# print("Number of learnable parameters: ", num_params)
# ---------- LOAD FROM LATEST CHECKPOINT ---------- #
gc.collect()
torch.cuda.empty_cache()
hat = Network()
hat.load_network(output)
num_params = sum(p.numel() for p in hat.model.parameters() if p.requires_grad)
print("Number of learnable parameters: ", num_params)
image = image.squeeze(0)
hat.inference(lr_image)