import os import cv2 from tqdm import tqdm import yaml import numpy as np import warnings from skimage import img_as_ubyte import safetensors import safetensors.torch warnings.filterwarnings('ignore') import imageio import torch from src.facerender.pirender.config import Config from src.facerender.pirender.face_model import FaceGenerator from pydub import AudioSegment from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list from src.utils.paste_pic import paste_pic from src.utils.videoio import save_video_with_watermark try: import webui # in webui in_webui = True except: in_webui = False class AnimateFromCoeff_PIRender(): def __init__(self, sadtalker_path, device): opt = Config(sadtalker_path['pirender_yaml_path'], None, is_train=False) opt.device = device self.net_G_ema = FaceGenerator(**opt.gen.param).to(opt.device) checkpoint_path = sadtalker_path['pirender_checkpoint'] checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) self.net_G_ema.load_state_dict(checkpoint['net_G_ema'], strict=False) print('load [net_G] and [net_G_ema] from {}'.format(checkpoint_path)) self.net_G = self.net_G_ema.eval() self.device = device def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256): source_image=x['source_image'].type(torch.FloatTensor) source_semantics=x['source_semantics'].type(torch.FloatTensor) target_semantics=x['target_semantics_list'].type(torch.FloatTensor) source_image=source_image.to(self.device) source_semantics=source_semantics.to(self.device) target_semantics=target_semantics.to(self.device) frame_num = x['frame_num'] with torch.no_grad(): predictions_video = [] for i in tqdm(range(target_semantics.shape[1]), 'FaceRender:'): predictions_video.append(self.net_G(source_image, target_semantics[:, i])['fake_image']) predictions_video = torch.stack(predictions_video, dim=1) predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:]) video = [] for idx in range(len(predictions_video)): image = predictions_video[idx] image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32) video.append(image) result = img_as_ubyte(video) ### the generated video is 256x256, so we keep the aspect ratio, original_size = crop_info[0] if original_size: result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ] video_name = x['video_name'] + '.mp4' path = os.path.join(video_save_dir, 'temp_'+video_name) imageio.mimsave(path, result, fps=float(25)) av_path = os.path.join(video_save_dir, video_name) return_path = av_path audio_path = x['audio_path'] audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] new_audio_path = os.path.join(video_save_dir, audio_name+'.wav') start_time = 0 # cog will not keep the .mp3 filename sound = AudioSegment.from_file(audio_path) frames = frame_num end_time = start_time + frames*1/25*1000 word1=sound.set_frame_rate(16000) word = word1[start_time:end_time] word.export(new_audio_path, format="wav") save_video_with_watermark(path, new_audio_path, av_path, watermark= False) print(f'The generated video is named {video_save_dir}/{video_name}') if 'full' in preprocess.lower(): # only add watermark to the full image. video_name_full = x['video_name'] + '_full.mp4' full_video_path = os.path.join(video_save_dir, video_name_full) return_path = full_video_path paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False) print(f'The generated video is named {video_save_dir}/{video_name_full}') else: full_video_path = av_path #### paste back then enhancers if enhancer: video_name_enhancer = x['video_name'] + '_enhanced.mp4' enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer) av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) return_path = av_path_enhancer try: enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer) imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) except: enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer) imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False) print(f'The generated video is named {video_save_dir}/{video_name_enhancer}') os.remove(enhanced_path) os.remove(path) os.remove(new_audio_path) return return_path