Spaces:
Runtime error
Runtime error
File size: 9,140 Bytes
8d0209c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
import cv2, os, subprocess
from tqdm import tqdm
import torch
import platform
# import sys
# sys.path.append('..')
from src.models import Wav2Lip as wav2lip_mdoel
from src.utils import audio
import face_detection
class Wav2Lip:
def __init__(self, path = 'checkpoints/wav2lip.pth'):
self.fps = 25
self.resize_factor = 1
self.mel_step_size = 16
self.static = False
self.img_size = 96
self.face_det_batch_size = 2
self.box = [-1, -1, -1, -1]
self.pads = [0, 10, 0, 0]
self.nosmooth = False
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = self.load_model(path)
def load_model(self, checkpoint_path):
model = wav2lip_mdoel()
print("Load checkpoint from: {}".format(checkpoint_path))
if self.device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(self.device)
return model.eval()
# def predict(self, face_path, audio_file, batch_size):
# if face_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
# return self.predict_img(face_path, audio_file, batch_size)
# elif face_path.split('.')[1] == 'mp4':
# return self.predict_video(face_path, audio_file, batch_size)
# else:
# return None
def predict(self, face, audio_file, batch_size):
os.makedirs('results', exist_ok=True)
os.makedirs('temp', exist_ok=True)
frame = cv2.imread(face)
if self.resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//self.resize_factor, frame.shape[0]//self.resize_factor))
full_frames = [frame]
wav = audio.load_wav(audio_file, 16000)
mel = audio.melspectrogram(wav)
mel_chunks = []
mel_idx_multiplier = 80./self.fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + self.mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - self.mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + self.mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[:len(mel_chunks)]
batch_size = batch_size
gen = self.datagen(full_frames.copy(), mel_chunks, batch_size)
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), self.fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(self.device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(self.device)
with torch.no_grad():
pred = self.model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_file, 'temp/result.avi', 'results/example_answer.mp4')
subprocess.call(command, shell=platform.system() != 'Windows')
return 'results/example_answer.mp4'
def datagen(self, frames, mels, batch_size):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if self.box[0] == -1:
if not self.static:
face_det_results = self.face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = self.face_detect([frames[0]])
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = self.box
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if self.static else i%len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (self.img_size, self.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, self.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def face_detect(self, images):
try:
detector = face_detection.FaceAlignment(face_detection.LandmarksType.TWO_D,
flip_input=False, device=self.device)
except:
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=self.device)
batch_size = self.face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
# img_batch = torch.tensor(np.array(images[i:i + batch_size]), device=self.device)
# img_batch = img_batch.permute(0, 3, 1, 2)
# print(img_batch.shape, type(img_batch))
# predictions.extend(detector.get_landmarks_from_batch(img_batch))
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except Exception as e:
print("Error in face detection: {}".format(e))
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = self.pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not self.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def get_smoothened_boxes(self, boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
if __name__ == '__main__':
wav2lip = Wav2Lip('../checkpoints/wav2lip.pth')
wav2lip.predict('../example.png', '../answer.wav', 2) |