File size: 9,140 Bytes
8d0209c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import cv2, os,  subprocess
from tqdm import tqdm
import torch
import platform

# import sys
# sys.path.append('..')
from src.models import Wav2Lip as wav2lip_mdoel
from src.utils import audio
import face_detection

class Wav2Lip:
    def __init__(self, path = 'checkpoints/wav2lip.pth'):
        self.fps = 25
        self.resize_factor = 1
        self.mel_step_size = 16
        self.static = False
        self.img_size = 96
        self.face_det_batch_size = 2
        self.box = [-1, -1, -1, -1]
        self.pads = [0, 10, 0, 0]
        self.nosmooth = False
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model = self.load_model(path)

    def load_model(self, checkpoint_path):
        model = wav2lip_mdoel()
        print("Load checkpoint from: {}".format(checkpoint_path))
        if self.device == 'cuda':
            checkpoint = torch.load(checkpoint_path)
        else:
            checkpoint = torch.load(checkpoint_path,
                                    map_location=lambda storage, loc: storage)
        s = checkpoint["state_dict"]
        new_s = {}
        for k, v in s.items():
            new_s[k.replace('module.', '')] = v
        model.load_state_dict(new_s)

        model = model.to(self.device)
        return model.eval()

    # def predict(self, face_path, audio_file, batch_size):
    #     if face_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
    #         return self.predict_img(face_path, audio_file, batch_size)
    #     elif face_path.split('.')[1] == 'mp4':
    #         return self.predict_video(face_path, audio_file, batch_size)
    #     else:
    #         return None
                   
    def predict(self, face, audio_file, batch_size):
        os.makedirs('results', exist_ok=True)
        os.makedirs('temp', exist_ok=True)
        frame = cv2.imread(face)
        if self.resize_factor > 1:
            frame = cv2.resize(frame, (frame.shape[1]//self.resize_factor, frame.shape[0]//self.resize_factor))
        full_frames = [frame]
        wav = audio.load_wav(audio_file, 16000)
        mel = audio.melspectrogram(wav)
        mel_chunks = []
        mel_idx_multiplier = 80./self.fps 
        i = 0
        while 1:
            start_idx = int(i * mel_idx_multiplier)
            if start_idx + self.mel_step_size > len(mel[0]):
                mel_chunks.append(mel[:, len(mel[0]) - self.mel_step_size:])
                break
            mel_chunks.append(mel[:, start_idx : start_idx + self.mel_step_size])
            i += 1

        print("Length of mel chunks: {}".format(len(mel_chunks)))

        full_frames = full_frames[:len(mel_chunks)]
       
        batch_size = batch_size
        gen = self.datagen(full_frames.copy(), mel_chunks, batch_size)
        
        for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, 
                                                total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
            if i == 0:
                frame_h, frame_w = full_frames[0].shape[:-1]
                out = cv2.VideoWriter('temp/result.avi', 
                                        cv2.VideoWriter_fourcc(*'DIVX'), self.fps, (frame_w, frame_h))

            img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(self.device)
            mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(self.device)

            with torch.no_grad():
                pred = self.model(mel_batch, img_batch)

            pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
            
            for p, f, c in zip(pred, frames, coords):
                y1, y2, x1, x2 = c
                p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

                f[y1:y2, x1:x2] = p
                out.write(f)

        out.release()

        command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_file, 'temp/result.avi', 'results/example_answer.mp4')
        subprocess.call(command, shell=platform.system() != 'Windows')
        return 'results/example_answer.mp4'


    def datagen(self, frames, mels, batch_size):
        img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if self.box[0] == -1:
            if not self.static:
                face_det_results = self.face_detect(frames) # BGR2RGB for CNN face detection
            else:
                face_det_results = self.face_detect([frames[0]])
        else:
            print('Using the specified bounding box instead of face detection...')
            y1, y2, x1, x2 = self.box
            face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]

        for i, m in enumerate(mels):
            idx = 0 if self.static else i%len(frames)
            frame_to_save = frames[idx].copy()
            face, coords = face_det_results[idx].copy()

            face = cv2.resize(face, (self.img_size, self.img_size))
                
            img_batch.append(face)
            mel_batch.append(m)
            frame_batch.append(frame_to_save)
            coords_batch.append(coords)

            if len(img_batch) >= batch_size:
                img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

                img_masked = img_batch.copy()
                img_masked[:, self.img_size//2:] = 0

                img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
                mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

                yield img_batch, mel_batch, frame_batch, coords_batch
                img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

        if len(img_batch) > 0:
            img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

            img_masked = img_batch.copy()
            img_masked[:, self.img_size//2:] = 0

            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
            mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

            yield img_batch, mel_batch, frame_batch, coords_batch

    def face_detect(self, images):
        try:
            detector = face_detection.FaceAlignment(face_detection.LandmarksType.TWO_D, 
                                                    flip_input=False, device=self.device)
        except:
            detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, 
                                                    flip_input=False, device=self.device)

        batch_size = self.face_det_batch_size
        
        while 1:
            predictions = []
            try:
                for i in tqdm(range(0, len(images), batch_size)):
                    # img_batch = torch.tensor(np.array(images[i:i + batch_size]), device=self.device)
                    # img_batch = img_batch.permute(0, 3, 1, 2)
                    # print(img_batch.shape, type(img_batch))
                    # predictions.extend(detector.get_landmarks_from_batch(img_batch))
                    predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
            except Exception as e:
                print("Error in face detection: {}".format(e))
                if batch_size == 1: 
                    raise RuntimeError('Image too big to run face detection on GPU. Please use the resize_factor argument')
                batch_size //= 2
                print('Recovering from OOM error; New batch size: {}'.format(batch_size))
                continue
            break

        results = []
        pady1, pady2, padx1, padx2 = self.pads
        for rect, image in zip(predictions, images):
            if rect is None:
                cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
                raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
            
            y1 = max(0, rect[1] - pady1)
            y2 = min(image.shape[0], rect[3] + pady2)
            x1 = max(0, rect[0] - padx1)
            x2 = min(image.shape[1], rect[2] + padx2)
            
            results.append([x1, y1, x2, y2])

        boxes = np.array(results)
        if not self.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5)
        results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

        del detector
        return results 
    
    def get_smoothened_boxes(self, boxes, T):
        for i in range(len(boxes)):
            if i + T > len(boxes):
                window = boxes[len(boxes) - T:]
            else:
                window = boxes[i : i + T]
            boxes[i] = np.mean(window, axis=0)
        return boxes
    
if __name__ == '__main__':
    wav2lip = Wav2Lip('../checkpoints/wav2lip.pth')
    wav2lip.predict('../example.png', '../answer.wav', 2)