theoldmandthesea
commited on
Commit
·
cac16fe
1
Parent(s):
e972ba9
Update app.py
Browse files
app.py
CHANGED
@@ -2,31 +2,57 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
-
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
19 |
-
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
|
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
32 |
return speech.cpu()
|
@@ -41,9 +67,8 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
# load speech translation checkpoint
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
12 |
|
13 |
# load text-to-speech checkpoint and speaker embeddings
|
14 |
+
model_id = "Sandiago21/speecht5_finetuned_voxpopuli_it" # update with your model id
|
15 |
+
# pipe = pipeline("automatic-speech-recognition", model=model_id)
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
17 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
18 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
19 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
20 |
+
|
21 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
22 |
+
|
23 |
+
replacements = [
|
24 |
+
("á", "a"),
|
25 |
+
("ç", "c"),
|
26 |
+
("è", "e"),
|
27 |
+
("ì", "i"),
|
28 |
+
("í", "i"),
|
29 |
+
("ò", "o"),
|
30 |
+
("ó", "o"),
|
31 |
+
("ù", "u"),
|
32 |
+
("ú", "u"),
|
33 |
+
("š", "s"),
|
34 |
+
("ï", "i"),
|
35 |
+
]
|
36 |
+
|
37 |
+
def cleanup_text(text):
|
38 |
+
for src, dst in replacements:
|
39 |
+
text = text.replace(src, dst)
|
40 |
+
return text
|
41 |
+
|
42 |
+
def synthesize_speech(text):
|
43 |
+
text = cleanup_text(text)
|
44 |
+
inputs = processor(text=text, return_tensors="pt")
|
45 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
46 |
|
47 |
+
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
|
48 |
|
49 |
def translate(audio):
|
50 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "italian"})
|
51 |
return outputs["text"]
|
52 |
|
53 |
|
54 |
def synthesise(text):
|
55 |
+
text = cleanup_text(text)
|
56 |
inputs = processor(text=text, return_tensors="pt")
|
57 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
58 |
return speech.cpu()
|
|
|
67 |
|
68 |
title = "Cascaded STST"
|
69 |
description = """
|
70 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_voxpopuli_it](https://huggingface.co/Sandiago21/speecht5_finetuned_voxpopuli_it) checkpoint for text-to-speech, which is based on Microsoft's
|
71 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Italian Audio dataset:
|
|
|
72 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
73 |
"""
|
74 |
|