Spaces:
Sleeping
Sleeping
Used Nemo streaming logic
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import librosa
|
4 |
import torch
|
5 |
|
6 |
-
from math import
|
7 |
import nemo.collections.asr as nemo_asr
|
8 |
|
9 |
|
@@ -17,11 +17,17 @@ asr_model.encoder.freeze()
|
|
17 |
asr_model.decoder.freeze()
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def resample(audio):
|
27 |
audio_16k, sr = librosa.load(audio, sr = asr_model.cfg["sample_rate"],
|
@@ -38,19 +44,13 @@ def model(audio_16k):
|
|
38 |
|
39 |
|
40 |
def decode_predictions(logits_list):
|
41 |
-
|
42 |
-
logits_overhead = logits_list[0].shape[1] * overhead_len / total_buffer / 2
|
43 |
-
if (logits_overhead * 2 != int(logits_overhead * 2)) and (len(logits_list) != 1):# if first chunk
|
44 |
-
raise ValueError("Wrong total_buffer")
|
45 |
-
|
46 |
# cut overhead
|
47 |
cutted_logits = []
|
48 |
for idx in range(len(logits_list)):
|
49 |
-
start_cut = 0 if (idx==0) else
|
50 |
-
end_cut = 1 if (idx==len(logits_list)-1) else
|
51 |
-
|
52 |
-
end_cut +=1
|
53 |
-
logits = logits_list[idx][:, start_cut:-end_cut]
|
54 |
cutted_logits.append(logits)
|
55 |
|
56 |
# join
|
|
|
3 |
import librosa
|
4 |
import torch
|
5 |
|
6 |
+
from math import ceil
|
7 |
import nemo.collections.asr as nemo_asr
|
8 |
|
9 |
|
|
|
17 |
asr_model.decoder.freeze()
|
18 |
|
19 |
|
20 |
+
buffer_len = 8.0
|
21 |
+
chunk_len = 4.8
|
22 |
+
total_buffer = round(buffer_len * asr_model.cfg.sample_rate)
|
23 |
+
overhead_len = round((buffer_len - chunk_len) * asr_model.cfg.sample_rate)
|
24 |
+
model_stride = 8
|
25 |
|
26 |
|
27 |
+
model_stride_in_secs = asr_model.cfg.preprocessor.window_stride * model_stride
|
28 |
+
tokens_per_chunk = ceil(chunk_len / model_stride_in_secs)
|
29 |
+
mid_delay = ceil((chunk_len + (buffer_len - chunk_len) / 2) / model_stride_in_secs)
|
30 |
+
|
31 |
|
32 |
def resample(audio):
|
33 |
audio_16k, sr = librosa.load(audio, sr = asr_model.cfg["sample_rate"],
|
|
|
44 |
|
45 |
|
46 |
def decode_predictions(logits_list):
|
47 |
+
logits_len = logits_list[0].shape[1]
|
|
|
|
|
|
|
|
|
48 |
# cut overhead
|
49 |
cutted_logits = []
|
50 |
for idx in range(len(logits_list)):
|
51 |
+
start_cut = 0 if (idx==0) else logits_len - 1 - mid_delay
|
52 |
+
end_cut = -1 if (idx==len(logits_list)-1) else logits_len - 1 - mid_delay + tokens_per_chunk
|
53 |
+
logits = logits_list[idx][:, start_cut:end_cut]
|
|
|
|
|
54 |
cutted_logits.append(logits)
|
55 |
|
56 |
# join
|