Update app.py
Browse files
app.py
CHANGED
@@ -1,207 +1,121 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import torch
|
3 |
-
# import uuid
|
4 |
-
# from PIL import Image
|
5 |
-
# from torchvision import transforms
|
6 |
-
# from transformers import AutoModelForImageSegmentation
|
7 |
-
# from typing import Union, List
|
8 |
-
# from loadimg import load_img # Your helper to load from URL or file
|
9 |
-
|
10 |
-
# torch.set_float32_matmul_precision("high")
|
11 |
-
|
12 |
-
# # Load BiRefNet model
|
13 |
-
# birefnet = AutoModelForImageSegmentation.from_pretrained(
|
14 |
-
# "ZhengPeng7/BiRefNet", trust_remote_code=True
|
15 |
-
# )
|
16 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
# birefnet.to(device)
|
18 |
-
|
19 |
-
# # Image transformation
|
20 |
-
# transform_image = transforms.Compose([
|
21 |
-
# transforms.Resize((1024, 1024)),
|
22 |
-
# transforms.ToTensor(),
|
23 |
-
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
24 |
-
# ])
|
25 |
-
|
26 |
-
# def process(image: Image.Image) -> Image.Image:
|
27 |
-
# image_size = image.size
|
28 |
-
# input_tensor = transform_image(image).unsqueeze(0).to(device)
|
29 |
-
|
30 |
-
# with torch.no_grad():
|
31 |
-
# preds = birefnet(input_tensor)[-1].sigmoid().cpu()
|
32 |
-
|
33 |
-
# pred = preds[0].squeeze()
|
34 |
-
# mask = transforms.ToPILImage()(pred).resize(image_size).convert("L")
|
35 |
-
# binary_mask = mask.point(lambda p: 255 if p > 127 else 0)
|
36 |
-
|
37 |
-
# white_bg = Image.new("RGB", image_size, (255, 255, 255))
|
38 |
-
# result = Image.composite(image, white_bg, binary_mask)
|
39 |
-
# return result
|
40 |
-
|
41 |
-
# def handler(image=None, image_url=None, batch_urls=None) -> Union[str, List[str], None]:
|
42 |
-
# results = []
|
43 |
-
|
44 |
-
# try:
|
45 |
-
# # Single image upload
|
46 |
-
# if image is not None:
|
47 |
-
# image = image.convert("RGB")
|
48 |
-
# processed = process(image)
|
49 |
-
# filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
50 |
-
# processed.save(filename)
|
51 |
-
# return filename
|
52 |
-
|
53 |
-
# # Single image from URL
|
54 |
-
# if image_url:
|
55 |
-
# im = load_img(image_url, output_type="pil").convert("RGB")
|
56 |
-
# processed = process(im)
|
57 |
-
# filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
58 |
-
# processed.save(filename)
|
59 |
-
# return filename
|
60 |
-
|
61 |
-
# # Batch of URLs
|
62 |
-
# if batch_urls:
|
63 |
-
# urls = [u.strip() for u in batch_urls.split(",") if u.strip()]
|
64 |
-
# for url in urls:
|
65 |
-
# try:
|
66 |
-
# im = load_img(url, output_type="pil").convert("RGB")
|
67 |
-
# processed = process(im)
|
68 |
-
# filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
69 |
-
# processed.save(filename)
|
70 |
-
# results.append(filename)
|
71 |
-
# except Exception as e:
|
72 |
-
# print(f"Error with {url}: {e}")
|
73 |
-
# return results if results else None
|
74 |
-
|
75 |
-
# except Exception as e:
|
76 |
-
# print("General error:", e)
|
77 |
-
|
78 |
-
# return None
|
79 |
-
|
80 |
-
# # Interface
|
81 |
-
# demo = gr.Interface(
|
82 |
-
# fn=handler,
|
83 |
-
# inputs=[
|
84 |
-
# gr.Image(label="Upload Image", type="pil"),
|
85 |
-
# gr.Textbox(label="Paste Image URL"),
|
86 |
-
# gr.Textbox(label="Comma-separated Image URLs (Batch)"),
|
87 |
-
# ],
|
88 |
-
# outputs=gr.File(label="Output File(s)", file_count="multiple"),
|
89 |
-
# title="Background Remover (White Fill)",
|
90 |
-
# description="Upload an image, paste a URL, or send a batch of URLs to remove the background and replace it with white.",
|
91 |
-
# )
|
92 |
-
|
93 |
-
# if __name__ == "__main__":
|
94 |
-
# demo.launch(show_error=True, mcp_server=True)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
import gradio as gr
|
99 |
import torch
|
100 |
import uuid
|
101 |
import base64
|
|
|
|
|
|
|
102 |
from PIL import Image
|
103 |
-
from torchvision import
|
104 |
-
|
105 |
from typing import Union, List
|
106 |
-
from loadimg import load_img # Your helper to load from URL or file
|
107 |
from io import BytesIO
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
#
|
112 |
-
|
113 |
-
|
114 |
-
)
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def process(image: Image.Image) -> Image.Image:
|
140 |
image_size = image.size
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
white_bg = Image.new("RGB", image_size, (255, 255, 255))
|
151 |
-
result = Image.composite(image, white_bg, binary_mask)
|
152 |
return result
|
153 |
|
154 |
-
def handler(image=None, image_url=None, batch_urls=None) -> Union[str, List[str], None]:
|
155 |
-
results = []
|
156 |
-
|
157 |
-
try:
|
158 |
-
# Single image upload
|
159 |
-
if image is not None:
|
160 |
-
image = image.convert("RGB")
|
161 |
-
processed = process(image)
|
162 |
-
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
163 |
-
processed.save(filename)
|
164 |
-
return filename
|
165 |
-
|
166 |
-
# Single image from URL (supports both regular URLs and base64 data URLs)
|
167 |
-
if image_url:
|
168 |
-
im = load_image_from_data_url(image_url).convert("RGB")
|
169 |
-
processed = process(im)
|
170 |
-
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
171 |
-
processed.save(filename)
|
172 |
-
return filename
|
173 |
-
|
174 |
-
# Batch of URLs (supports both regular URLs and base64 data URLs)
|
175 |
-
if batch_urls:
|
176 |
-
urls = [u.strip() for u in batch_urls.split(",") if u.strip()]
|
177 |
-
for url in urls:
|
178 |
-
try:
|
179 |
-
im = load_image_from_data_url(url).convert("RGB")
|
180 |
-
processed = process(im)
|
181 |
-
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
182 |
-
processed.save(filename)
|
183 |
-
results.append(filename)
|
184 |
-
except Exception as e:
|
185 |
-
print(f"Error with {url}: {e}")
|
186 |
-
return results if results else None
|
187 |
-
|
188 |
-
except Exception as e:
|
189 |
-
print("General error:", e)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
return None
|
192 |
|
193 |
-
|
|
|
194 |
demo = gr.Interface(
|
195 |
fn=handler,
|
196 |
-
inputs=
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
],
|
201 |
-
outputs=gr.File(label="Output File(s)", file_count="multiple"),
|
202 |
-
title="Background Remover (White Fill)",
|
203 |
-
description="Upload an image, paste a URL, or send a batch of URLs to remove the background and replace it with white.",
|
204 |
)
|
205 |
|
206 |
if __name__ == "__main__":
|
207 |
-
demo.launch(show_error=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import uuid
|
4 |
import base64
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime as ort
|
7 |
+
import cv2
|
8 |
from PIL import Image
|
9 |
+
from torchvision.transforms.functional import normalize
|
10 |
+
import torch.nn.functional as F
|
11 |
from typing import Union, List
|
|
|
12 |
from io import BytesIO
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
|
15 |
+
# ---- Config ----
|
16 |
+
INPUT_SIZE = [1200, 1800] # (H, W)
|
17 |
+
|
18 |
+
# ---- Load ONNX model ----
|
19 |
+
model_path = hf_hub_download(repo_id="Trendyol/background-removal", filename="model.onnx")
|
20 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
21 |
+
try:
|
22 |
+
ort_sess = ort.InferenceSession(model_path, providers=providers)
|
23 |
+
except Exception:
|
24 |
+
ort_sess = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
25 |
+
|
26 |
+
|
27 |
+
# ---- Utils from Trendyol ----
|
28 |
+
def keep_large_components(a: np.ndarray) -> np.ndarray:
|
29 |
+
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9))
|
30 |
+
a_mask = (a > 25).astype(np.uint8) * 255
|
31 |
+
analysis = cv2.connectedComponentsWithStats(a_mask, 4, cv2.CV_32S)
|
32 |
+
(totalLabels, label_ids, values, _) = analysis
|
33 |
+
|
34 |
+
h, w = a.shape[:2]
|
35 |
+
area_limit = 50000 * (h * w) / (INPUT_SIZE[1] * INPUT_SIZE[0])
|
36 |
+
i_to_keep = []
|
37 |
+
for i in range(1, totalLabels):
|
38 |
+
area = values[i, cv2.CC_STAT_AREA]
|
39 |
+
if area > area_limit:
|
40 |
+
i_to_keep.append(i)
|
41 |
+
|
42 |
+
if len(i_to_keep) > 0:
|
43 |
+
final_mask = np.zeros_like(a, dtype=np.uint8)
|
44 |
+
for i in i_to_keep:
|
45 |
+
componentMask = (label_ids == i).astype("uint8") * 255
|
46 |
+
final_mask = cv2.bitwise_or(final_mask, componentMask)
|
47 |
+
final_mask = cv2.dilate(final_mask, dilate_kernel, iterations=2)
|
48 |
+
a = cv2.bitwise_and(a, final_mask)
|
49 |
+
|
50 |
+
a = a.reshape((a.shape[0], a.shape[1], 1))
|
51 |
+
return a
|
52 |
+
|
53 |
+
|
54 |
+
def preprocess_input(im: np.ndarray) -> torch.Tensor:
|
55 |
+
if len(im.shape) < 3:
|
56 |
+
im = im[:, :, np.newaxis]
|
57 |
+
if im.shape[2] == 4:
|
58 |
+
im = im[:, :, :3]
|
59 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
|
60 |
+
im_tensor = F.upsample(torch.unsqueeze(im_tensor, 0), INPUT_SIZE, mode="bilinear").type(torch.uint8)
|
61 |
+
image = torch.divide(im_tensor, 255.0)
|
62 |
+
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
63 |
+
return image
|
64 |
+
|
65 |
+
|
66 |
+
def postprocess_output(result: np.ndarray, orig_im_shape) -> np.ndarray:
|
67 |
+
result = torch.squeeze(
|
68 |
+
F.upsample(torch.from_numpy(result).unsqueeze(0), (orig_im_shape), mode="bilinear"), 0
|
69 |
+
)
|
70 |
+
ma = torch.max(result)
|
71 |
+
mi = torch.min(result)
|
72 |
+
result = (result - mi) / (ma - mi + 1e-8)
|
73 |
+
a = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
74 |
+
a = keep_large_components(a)
|
75 |
+
return a
|
76 |
+
|
77 |
+
|
78 |
+
# ---- Core processing ----
|
79 |
def process(image: Image.Image) -> Image.Image:
|
80 |
image_size = image.size
|
81 |
+
np_img = np.array(image.convert("RGB"))
|
82 |
|
83 |
+
# Preprocess
|
84 |
+
img_tensor = preprocess_input(np_img)
|
85 |
|
86 |
+
# Inference
|
87 |
+
inputs = {ort_sess.get_inputs()[0].name: img_tensor.numpy()}
|
88 |
+
result = ort_sess.run(None, inputs)[0][0] # (1,1,H,W)
|
89 |
|
90 |
+
# Postprocess to mask
|
91 |
+
alpha = postprocess_output(result, (np_img.shape[0], np_img.shape[1])) # (H,W,1)
|
92 |
+
|
93 |
+
# White background composite
|
94 |
+
mask = Image.fromarray(alpha.squeeze(-1)).convert("L")
|
95 |
+
binary_mask = mask.point(lambda p: 255 if p > 25 else 0)
|
96 |
white_bg = Image.new("RGB", image_size, (255, 255, 255))
|
97 |
+
result = Image.composite(image.convert("RGB"), white_bg, binary_mask)
|
98 |
return result
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# ---- Gradio handler ----
|
102 |
+
def handler(image=None) -> Union[str, None]:
|
103 |
+
if image is not None:
|
104 |
+
processed = process(image)
|
105 |
+
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
106 |
+
processed.save(filename)
|
107 |
+
return filename
|
108 |
return None
|
109 |
|
110 |
+
|
111 |
+
# ---- Gradio UI ----
|
112 |
demo = gr.Interface(
|
113 |
fn=handler,
|
114 |
+
inputs=gr.Image(label="Upload Image", type="pil"),
|
115 |
+
outputs=gr.File(label="Output File"),
|
116 |
+
title="Background Remover (Trendyol)",
|
117 |
+
description="Upload an image to remove the background with the Trendyol ONNX model. Background is replaced with white.",
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
demo.launch(show_error=True)
|