Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,15 +10,12 @@ import os
|
|
10 |
|
11 |
token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
12 |
|
13 |
-
|
14 |
-
|
15 |
model_id = "thelabel/240903-image-tagging"
|
16 |
-
config = AutoConfig.from_pretrained(model_id,token=token)
|
17 |
-
model = AutoModelForImageClassification.from_pretrained(model_id,token=token)
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model.to(device)
|
20 |
|
21 |
-
# Standard ViT image transforms
|
22 |
image_transform = transforms.Compose([
|
23 |
transforms.Resize((224, 224)),
|
24 |
transforms.ToTensor(),
|
@@ -30,7 +27,7 @@ def load_image_from_url(url):
|
|
30 |
response = requests.get(url, timeout=10)
|
31 |
response.raise_for_status()
|
32 |
return Image.open(BytesIO(response.content)).convert("RGB")
|
33 |
-
except Exception
|
34 |
return None
|
35 |
|
36 |
@spaces.GPU
|
@@ -55,9 +52,8 @@ def predict_tags(image_url, threshold=0.5):
|
|
55 |
def gradio_predict(url, threshold):
|
56 |
tags, error = predict_tags(url, threshold)
|
57 |
if error:
|
58 |
-
return error
|
59 |
-
|
60 |
-
return "\n".join([f"{tag}: {score:.2f}" for tag, score in tags]), image
|
61 |
|
62 |
demo = gr.Interface(
|
63 |
fn=gradio_predict,
|
@@ -65,12 +61,10 @@ demo = gr.Interface(
|
|
65 |
gr.Textbox(label="Image URL"),
|
66 |
gr.Slider(0, 1, value=0.5, step=0.01, label="Threshold"),
|
67 |
],
|
68 |
-
outputs=
|
69 |
-
gr.Textbox(label="Tags"),
|
70 |
-
gr.Image(label="Preview", type="pil"),
|
71 |
-
],
|
72 |
title="Image Tagging with ViT",
|
73 |
description="Paste an image URL and get predicted tags using thelabel/240903-image-tagging model.",
|
74 |
)
|
|
|
75 |
if __name__ == "__main__":
|
76 |
demo.launch()
|
|
|
10 |
|
11 |
token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
12 |
|
|
|
|
|
13 |
model_id = "thelabel/240903-image-tagging"
|
14 |
+
config = AutoConfig.from_pretrained(model_id, token=token)
|
15 |
+
model = AutoModelForImageClassification.from_pretrained(model_id, token=token)
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
|
|
|
19 |
image_transform = transforms.Compose([
|
20 |
transforms.Resize((224, 224)),
|
21 |
transforms.ToTensor(),
|
|
|
27 |
response = requests.get(url, timeout=10)
|
28 |
response.raise_for_status()
|
29 |
return Image.open(BytesIO(response.content)).convert("RGB")
|
30 |
+
except Exception:
|
31 |
return None
|
32 |
|
33 |
@spaces.GPU
|
|
|
52 |
def gradio_predict(url, threshold):
|
53 |
tags, error = predict_tags(url, threshold)
|
54 |
if error:
|
55 |
+
return error
|
56 |
+
return "\n".join([f"{tag}: {score:.2f}" for tag, score in tags])
|
|
|
57 |
|
58 |
demo = gr.Interface(
|
59 |
fn=gradio_predict,
|
|
|
61 |
gr.Textbox(label="Image URL"),
|
62 |
gr.Slider(0, 1, value=0.5, step=0.01, label="Threshold"),
|
63 |
],
|
64 |
+
outputs=gr.Textbox(label="Tags"),
|
|
|
|
|
|
|
65 |
title="Image Tagging with ViT",
|
66 |
description="Paste an image URL and get predicted tags using thelabel/240903-image-tagging model.",
|
67 |
)
|
68 |
+
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch()
|