from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import pandas as pd from fastapi import FastAPI app=FastAPI() splits = {'train': 'train_df.csv', 'validation': 'val_df.csv', 'test': 'test_df.csv'} df = pd.read_csv("hf://datasets/Sp1786/multiclass-sentiment-analysis-dataset/" + splits["train"]) model_name = "tabularisai/multilingual-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict_sentiment(texts): inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"} return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()] texts = [ # English "I absolutely love the new design of this app!", "Cooking microwave pizzas, yummy.", "The weather is fine, nothing special.", ] print(predict_sentiment(texts))