PITI-Synthesis / glide_text2im /image_datasets_sketch.py
tfwang's picture
Upload image_datasets_sketch.py
d7db483
raw
history blame
8.07 kB
import math
import random
from PIL import Image
import blobfile as bf
from mpi4py import MPI
import numpy as np
from torch.utils.data import DataLoader, Dataset
import os
import torchvision.transforms as transforms
import torch as th
from .degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
from functools import partial
import cv2
from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
def load_data_sketch(
*,
data_dir,
batch_size,
image_size,
class_cond=False,
deterministic=False,
random_crop=False,
random_flip=True,
train=True,
low_res = 0,
uncond_p = 0,
mode = ''
):
"""
For a dataset, create a generator over (images, kwargs) pairs.
Each images is an NCHW float tensor, and the kwargs dict contains zero or
more keys, each of which map to a batched Tensor of their own.
The kwargs dict can be used for class labels, in which case the key is "y"
and the values are integer tensors of class labels.
:param data_dir: a dataset directory.
:param batch_size: the batch size of each returned pair.
:param image_size: the size to which images are resized.
:param class_cond: if True, include a "y" key in returned dicts for class
label. If classes are not available and this is true, an
exception will be raised.
:param deterministic: if True, yield results in a deterministic order.
:param random_crop: if True, randomly crop the images for augmentation.
:param random_flip: if True, randomly flip the images for augmentation.
"""
if not data_dir:
raise ValueError("unspecified data directory")
with open(data_dir) as f:
all_files = f.read().splitlines()
print(len(all_files))
classes = None
if class_cond:
# Assume classes are the first part of the filename,
# before an underscore.
class_names = [bf.basename(path).split("_")[0] for path in all_files]
sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
classes = [sorted_classes[x] for x in class_names]
dataset = ImageDataset(
image_size,
all_files,
classes=classes,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size(),
random_crop=random_crop,
random_flip=train,
down_sample_img_size = low_res,
uncond_p = uncond_p,
mode = mode,
)
if deterministic:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=8, drop_last=True, pin_memory=False
)
else:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=True, pin_memory=False
)
while True:
yield from loader
def _list_image_files_recursively(data_dir):
results = []
for entry in sorted(bf.listdir(data_dir)):
full_path = bf.join(data_dir, entry)
ext = entry.split(".")[-1]
if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
results.append(full_path)
elif bf.isdir(full_path):
results.extend(_list_image_files_recursively(full_path))
return results
class ImageDataset(Dataset):
def __init__(
self,
resolution,
image_paths,
classes=None,
shard=0,
num_shards=1,
random_crop=False,
random_flip=True,
down_sample_img_size = 0,
uncond_p = 0,
mode = '',
):
super().__init__()
self.crop_size = 256
self.resize_size = 256
self.local_images = image_paths[shard:][::num_shards]
self.local_classes = None if classes is None else classes[shard:][::num_shards]
self.random_crop = random_crop
self.random_flip = random_flip
self.down_sample_img = partial(degradation_fn_bsr_light, sf=resolution//down_sample_img_size) if down_sample_img_size else None
self.uncond_p = uncond_p
self.mode = mode
self.resolution = resolution
def __len__(self):
return len(self.local_images)
def __getitem__(self, idx):
if self.mode == 'coco-edge':
path = self.local_images[idx].replace('COCO-STUFF', 'COCO-Sketch')[:-4] + '.png'
path2 = path.replace('_img', '_sketch')
elif self.mode == 'flickr-edge':
path = self.local_images[idx].replace('images', 'img256')[:-4] + '.png'
path2 = path.replace('img256', 'sketch256')
with bf.BlobFile(path, "rb") as f:
pil_image = Image.open(f)
pil_image.load()
pil_image = pil_image.convert("RGB")
with bf.BlobFile(path2, "rb") as f:
pil_image2 = Image.open(f)
pil_image2.load()
pil_image2 = pil_image2.convert("L")
params = get_params(pil_image2.size, self.resize_size, self.crop_size)
transform_label = get_transform(params, self.resize_size, self.crop_size, method=Image.NEAREST, crop =self.random_crop, flip=self.random_flip)
label_pil = transform_label(pil_image2)
im_dist = cv2.distanceTransform(255-np.array(label_pil), cv2.DIST_L1, 3)
im_dist = np.clip((im_dist) , 0, 255).astype(np.uint8)
im_dist = Image.fromarray(im_dist).convert("RGB")
label_tensor = get_tensor()(im_dist)[:1]
label_tensor_ori = get_tensor()(label_pil.convert('RGB'))
transform_image = get_transform( params, self.resize_size, self.crop_size, crop =self.random_crop, flip=self.random_flip)
image_pil = transform_image(pil_image)
if self.resolution < 256:
image_pil = image_pil.resize((self.resolution, self.resolution), Image.BICUBIC)
image_tensor = get_tensor()(image_pil)
if self.down_sample_img:
image_pil = np.array(image_pil).astype(np.uint8)
down_sampled_image = self.down_sample_img(image=image_pil)["image"]
down_sampled_image = get_tensor()(down_sampled_image)
data_dict = {"ref":label_tensor, "low_res":down_sampled_image, "ref_ori":label_tensor_ori, "path": path}
return image_tensor, data_dict
if random.random() < self.uncond_p:
label_tensor = th.ones_like(label_tensor)
data_dict = {"ref":label_tensor, "ref_ori":label_tensor_ori, "path": path}
return image_tensor, data_dict
def get_params( size, resize_size, crop_size):
w, h = size
new_h = h
new_w = w
ss, ls = min(w, h), max(w, h) # shortside and longside
width_is_shorter = w == ss
ls = int(resize_size * ls / ss)
ss = resize_size
new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
x = random.randint(0, np.maximum(0, new_w - crop_size))
y = random.randint(0, np.maximum(0, new_h - crop_size))
flip = random.random() > 0.5
return {'crop_pos': (x, y), 'flip': flip}
def get_transform(params, resize_size, crop_size, method=Image.BICUBIC, flip=True, crop = True):
transform_list = []
transform_list.append(transforms.Lambda(lambda img: __scale(img, crop_size, method)))
if flip:
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
return transforms.Compose(transform_list)
def get_tensor(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def normalize():
return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
def __scale(img, target_width, method=Image.BICUBIC):
return img.resize((target_width, target_width), method)
def __flip(img, flip):
if flip:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img