textToSQL commited on
Commit
3ae5946
·
1 Parent(s): 4579397

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -60
app.py CHANGED
@@ -4,19 +4,10 @@ import openai
4
  import os
5
  openai.api_key = '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'
6
 
7
- # load model and processor
8
-
9
- model = whisper.load_model("medium")
10
 
11
- def get_completion(prompt, model='gpt-3.5-turbo'):
12
- messages = [{"role": "user", "content": prompt}]
13
- response = openai.ChatCompletion.create(
14
- model = model,
15
- messages = messages,
16
- temperature = 0,
17
-
18
- )
19
- return response.choices[0].message['content']
20
 
21
  def transcribe(audio):
22
 
@@ -38,51 +29,14 @@ def transcribe(audio):
38
  return result.text
39
 
40
 
41
-
42
- # gr.Interface(
43
- # title = 'Talk to NP',
44
- # fn=transcribe,
45
- # inputs=[
46
- # gr.inputs.Audio(source="microphone", type="filepath")
47
- # ],
48
- # outputs=[
49
- # "textbox"
50
- # ],
51
- # live=True).launch()
52
-
53
-
54
-
55
- demo = gr.Blocks()
56
-
57
- with demo:
58
- audio_file = gr.Audio(type="filepath")
59
- text1 = gr.Textbox()
60
- text2 = gr.Textbox()
61
-
62
- prompt = f"""
63
- You are a world class nurse practitioner. You are provided with text delimited by triple quotes. \
64
- Summarize the text and put it in a table format with rows as follows: \
65
-
66
- 1. Patient identification:
67
- 2. Chief complaint:
68
- 3. Medical history:
69
- 4. Family history:
70
- 5. Social history:
71
- 6. Review of systems:
72
- 7. Current medications:
73
- 8. Vaccination status:
74
- 9. Emotional well-being:
75
- 10. Patient concerns and expectations:
76
-
77
- \"\"\"{text1}\"\"\"
78
- """
79
-
80
- b1 = gr.Button("Transcribe audio")
81
- b2 = gr.Button("Summarize")
82
-
83
- b1.click(transcribe, inputs=audio_file, outputs=text1)
84
- b2.click(get_completion, inputs=text1, outputs=text2)
85
-
86
-
87
- demo.launch()
88
-
 
4
  import os
5
  openai.api_key = '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'
6
 
7
+ import whisper
8
+ import gradio as gr
 
9
 
10
+ model = whisper.load_model("small")
 
 
 
 
 
 
 
 
11
 
12
  def transcribe(audio):
13
 
 
29
  return result.text
30
 
31
 
32
+
33
+ gr.Interface(
34
+ title = 'OpenAI Whisper ASR Gradio Web UI',
35
+ fn=transcribe,
36
+ inputs=[
37
+ gr.inputs.Audio(source="microphone", type="filepath")
38
+ ],
39
+ outputs=[
40
+ "textbox"
41
+ ],
42
+ live=True).launch()