Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 21,143 Bytes
ff76d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import math
import pandas as pd
import numpy as np
from itertools import product
import shapely
from bokeh.models import Span, Label, ColumnDataSource, Whisker
from bokeh.plotting import figure, show
from shapely.geometry import Polygon
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn
task_patterns = {
"CB": [0, 3],
"RTE": [0, 3],
"BoolQ": [0, 3, 5],
"MNLI": [0, 3],
"COPA": [0, 1],
"WSC": [0, 1, 2],
"WiC": [0, 1],
"MultiRC": [0, 1, 2],
}
task_reps = {"CB": 4, "RTE": 4, "BoolQ": 4, "MNLI": 4, "COPA": 4, "WSC": 4, "WiC": 4, "MultiRC": 4}
task_best_pattern = {"CB": 0, "RTE": 0, "BoolQ": 0, "MNLI": 0, "COPA": 1, "WSC": 0, "WiC": 0, "MultiRC": 1}
task_metric_short = {
"CB": "f1-macro",
"RTE": "acc",
"BoolQ": "acc",
"MNLI": "acc",
"COPA": "acc",
"WSC": "acc",
"WiC": "acc",
"MultiRC": "f1",
}
task_metrics = {
"CB": "F1-macro",
"RTE": "accuracy",
"BoolQ": "accuracy",
"MNLI": "accuracy",
"COPA": "accuracy",
"WSC": "accuracy",
"WiC": "accuracy",
"MultiRC": "F1",
}
task_neutral = {
"CB": True,
"RTE": True,
"BoolQ": True,
"MNLI": True,
"COPA": False,
"WSC": False,
"multirc": True,
"WiC": True,
"MultiRC": True,
}
neutral_tasks = [
"BoolQ",
"CB",
"MNLI",
"MultiRC",
"RTE",
"WiC",
]
tasks = sorted(task_patterns.keys())
pvp_colors = ["goldenrod", "blanchedalmond", "floralwhite"]
ctl_colors = ["crimson", "salmon", "mistyrose"]
clf_colors = ["indigo", "plum", "thistle"]
def prompt_boolq(passage, question, pattern):
if pattern == 0:
return f"""<span style="color: #0c593d">{passage}</span> <span style="color: #910713"><b>Based on the previous passage,</b></span> <span style="color: #031154">{question}</span> <span style="color: #ba9004"><b>[YES/NO]</b></span>"""
if pattern == 1:
return f"""<span style="color: #0c593d">{passage}</span><span style="color: #910713"><b> Question:</b></span> <span style="color: #031154">{question}</span><span style="color: #910713"><b> Answer: </b></span><span style="color: #ba9004"><b>[YES/NO]</b></span>"""
if pattern == 2:
return f"""<span style="color: #910713"><b>Based on the following passage,</b></span> <span style="color: #031154">{question}</span><span style="color: #ba9004"><b> [YES/NO]</b></span> <span style="color: #0c593d">{passage}</span>"""
def advantage_text(advantage):
model_type = (
"""<span style="color: #4B0082">Head</span>"""
if advantage < 0
else """<span style="color: #daa520">Prompting</span>"""
)
return f"""<b>{model_type}</b> advantage: <b>{abs(advantage):.2f}</b> data points"""
def average_advantage_text(advantage):
model_type = (
"""<span style="color: #4B0082">head</span>"""
if advantage < 0
else """<span style="color: #daa520">prompting</span>"""
)
return f"""<b>Average {model_type}</b> advantage: <b>{abs(advantage):.2f}</b> data points"""
def naming_convention(task, seed, pvp_index=None, neutral=False):
method = f"PVP {pvp_index}" if pvp_index is not None else "CLF"
model = "roberta"
if neutral:
verbalizer = "neutral"
else:
verbalizer = None
return (
f"{method} {model}"
+ (f" {verbalizer} verbalizer" if verbalizer is not None else "")
+ f" seed {seed} - test-{task_metric_short[task]}-all-p"
)
def get_data(task):
url = f"https://raw.githubusercontent.com/TevenLeScao/pet/master/exported_results/{task.lower()}/wandb_export.csv"
df = pd.read_csv(url)
training_points = df["training_points"]
head_performances = np.transpose(np.array([df[naming_convention(task, i)] for i in range(task_reps[task])]))
pattern_performances = {}
for pattern in task_patterns[task]:
pattern_performances[pattern] = {
"normal": np.transpose(np.array([df[naming_convention(task, i, pattern)] for i in range(task_reps[task])]))
}
if task_neutral[task]:
pattern_performances[pattern]["neutral"] = np.transpose(
np.array([df[naming_convention(task, i, pattern, True)] for i in range(task_reps[task])])
)
return training_points, head_performances, pattern_performances
def reduct(performances, reduction="accmax", final_pattern=0, verbalizer="normal", exclude=None):
# Combining the different runs for each experimental set-up
reducted = None
if isinstance(performances, dict):
performances = performances[final_pattern][verbalizer]
if exclude is not None:
performances = np.delete(performances, exclude, axis=1)
if reduction == "avg":
# Average
reducted = np.nanmean(performances, axis=1)
if reduction == "std":
# Standard deviation
reducted = np.nanstd(performances, axis=1)
if reduction == "max":
# Maximum
reducted = np.nanmax(performances, axis=1)
if reduction == "accmax":
# This makes the maximum curve monotonic
max_performance = np.nanmax(performances, axis=1)
reducted = np.maximum.accumulate(max_performance)
assert reducted is not None, "unrecognized reduction method"
return reducted
def find_surrounding_points(perf, clf_results, pvp_results):
for i, clf_result in enumerate(clf_results):
if i - 1 > 0 and clf_result == clf_results[i - 1]:
continue
if clf_result > perf:
if i == 0:
raise ValueError(f"value {perf} too small")
else:
break
for j, pvp_result in enumerate(pvp_results):
if j - 1 > 0 and pvp_result == pvp_results[j - 1]:
continue
if pvp_result > perf:
if j == 0:
raise ValueError(f"value {perf} too small")
else:
break
return i - 1, j - 1
def interpolate(perf, x1, x2, y1, y2):
return x1 + (perf - y1) * (x2 - x1) / (y2 - y1)
def interpolate_from_idx(perf, idx, results, training_points):
return interpolate(perf, training_points[idx], training_points[idx + 1], results[idx], results[idx + 1])
def interpolate_from_perf(perf, overlapping_range, training_points, clf_results, pvp_results):
if not overlapping_range[0] <= perf <= overlapping_range[1]:
raise ValueError(f"perf {perf} not in acceptable bounds {overlapping_range}")
clf_idx, pvp_idx = find_surrounding_points(perf, clf_results, pvp_results)
return interpolate_from_idx(perf, clf_idx, clf_results, training_points), interpolate_from_idx(
perf, pvp_idx, pvp_results, training_points
)
def data_difference(perf, overlapping_range, training_points, clf_results, pvp_results):
x1, x2 = interpolate_from_perf(perf, overlapping_range, training_points, clf_results, pvp_results)
return x1 - x2
def calculate_overlap(clf_results, pvp_results, full_range=False):
if full_range:
return (min(min(clf_results), min(pvp_results)), max(max(clf_results), max(pvp_results)))
else:
return (max(min(clf_results), min(pvp_results)), min(max(clf_results), max(pvp_results)))
def calculate_range(overlapping_range, number_of_points):
integral_range = (
overlapping_range[0] + i / (number_of_points + 1) * (overlapping_range[1] - overlapping_range[0])
for i in range(1, number_of_points + 1)
)
return integral_range
def calculate_differences(integral_range, overlapping_range, training_points, clf_results, pvp_results):
differences = [
data_difference(y, overlapping_range, training_points, clf_results, pvp_results) for y in integral_range
]
return differences
def calculate_offset(training_points, clf_results, pvp_results, number_of_points=1000):
overlapping_range = calculate_overlap(clf_results, pvp_results)
integral_range = calculate_range(overlapping_range, number_of_points)
differences = calculate_differences(integral_range, overlapping_range, training_points, clf_results, pvp_results)
offset = sum(differences) / number_of_points
return offset
def intersection_with_range(training_points, results, band):
result_polygon = Polygon(
[(training_points[i], results[i]) for i in range(len(training_points))]
+ [(training_points[-1], 0), (training_points[0], 0)]
)
return result_polygon.intersection(band)
def fill_polygon(fig, polygon, color, label=None, alpha=1.0):
if polygon.is_empty or isinstance(polygon, shapely.geometry.LineString):
return
if isinstance(polygon, Polygon):
xs, ys = polygon.exterior.xy
fig.patch(xs, ys, color=color, alpha=alpha)
else:
for geom in polygon.geoms:
if isinstance(geom, shapely.geometry.LineString):
continue
xs, ys = geom.exterior.xy
fig.patch(xs, ys, color=color, alpha=alpha)
label = None
label_order = {
"head run": 0,
"head advantage": 1,
"control run": 2,
"optimization advantage": 3,
"prompting run": 4,
"semantics advantage": 5,
"region of comparison": 6,
}
def metric_tap(
event, overlapping_range, training_points, clf_results, pvp_results, advantage_box, advantage_plot
):
_, metric_value = event.x, event.y
try:
advantage_value = data_difference(metric_value, overlapping_range, training_points, clf_results, pvp_results)
advantage_box.text = advantage_text(advantage_value)
if not isinstance(advantage_plot.renderers[-1], Span):
metric_line = Span(
location=metric_value,
line_alpha=0.7,
dimension="width",
line_color=clf_colors[0] if advantage_value < 0 else pvp_colors[0],
line_dash="dashed",
line_width=1,
)
advantage_plot.renderers.extend([metric_line])
else:
advantage_plot.renderers[-1].location = metric_value
advantage_plot.renderers[-1].line_color = clf_colors[0] if advantage_value < 0 else pvp_colors[0]
# clicking outside the region
except ValueError:
pass
def plot_polygons_bokeh(task, training_points, clf_results, pvp_results, clf_colors, pvp_colors, x_log_scale=False):
overlapping_range = calculate_overlap(clf_results, pvp_results, False)
full_range = calculate_overlap(clf_results, pvp_results, True)
middle_y = (full_range[0] + full_range[1]) / 2
fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800,
x_axis_type="log" if x_log_scale else "linear", title="Performance over training subset sizes of head and prompting methods")
fig.circle(training_points, clf_results, color=clf_colors[0], legend="head run")
fig.circle(training_points, pvp_results, color=pvp_colors[0], legend="prompting run")
fig.line(training_points, clf_results, color=clf_colors[0], alpha=1)
fig.line(training_points, pvp_results, color=pvp_colors[0], alpha=1)
fig.xaxis.axis_label = "training subset size"
fig.yaxis.axis_label = task_metrics[task]
fig.patch(
[training_points[0], training_points[0], training_points[-1], training_points[-1]],
[overlapping_range[0], overlapping_range[1], overlapping_range[1], overlapping_range[0]],
color="black",
fill_alpha=0,
line_width=0,
legend="comparison region",
hatch_alpha=0.14,
hatch_scale=40,
hatch_pattern="/",
)
band = Polygon(
[
(training_points[0], overlapping_range[0]),
(training_points[0], overlapping_range[1]),
(training_points[-1], overlapping_range[1]),
(training_points[-1], overlapping_range[0]),
]
)
full_band = Polygon(
[
(training_points[0], full_range[0]),
(training_points[0], full_range[1]),
(training_points[-1], full_range[1]),
(training_points[-1], full_range[0]),
]
)
clf_polygon = intersection_with_range(training_points, clf_results, band)
pvp_polygon = intersection_with_range(training_points, pvp_results, band)
full_clf_polygon = intersection_with_range(training_points, clf_results, full_band)
full_pvp_polygon = intersection_with_range(training_points, pvp_results, full_band)
clf_inside_area = clf_polygon.difference(pvp_polygon)
pvp_inside_area = pvp_polygon.difference(clf_polygon)
clf_outside_area = (full_clf_polygon.difference(full_pvp_polygon)).difference(clf_inside_area)
pvp_outside_area = (full_pvp_polygon.difference(full_clf_polygon)).difference(pvp_inside_area)
fill_polygon(fig, clf_outside_area, clf_colors[1], alpha=0.13)
fill_polygon(fig, pvp_outside_area, pvp_colors[1], alpha=0.18)
fill_polygon(
fig, clf_inside_area, clf_colors[1], alpha=0.4, label="head advantage" if task == "WiC" else None
)
fill_polygon(fig, pvp_inside_area, pvp_colors[1], alpha=0.4, label="prompting advantage")
fig.line([training_points[0], training_points[-1]], [overlapping_range[0], overlapping_range[0]], color="dimgrey")
fig.line([training_points[0], training_points[-1]], [overlapping_range[1], overlapping_range[1]], color="dimgrey")
vline = Span(
location=training_points[-1], dimension="height", line_color="black", line_width=2.5, line_dash="dashed"
)
end_label = Label(
x=training_points[-1], y=middle_y, text="End of dataset", angle=90, angle_units="deg", text_align="center"
)
fig.renderers.extend([vline, end_label])
fig.legend.location = "bottom_right"
return fig
def plot_three_polygons_bokeh(
task, training_points, clf_results, pvp_results, ctl_results, clf_colors, pvp_colors, ctl_colors,
x_log_scale=False
):
overlapping_range = calculate_overlap(clf_results, pvp_results, False)
full_range = calculate_overlap(clf_results, pvp_results, True)
middle_y = (full_range[0] + full_range[1]) / 2
fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800,
x_axis_type="log" if x_log_scale else "linear", title="Performance over training subset sizes of head, prompting and prompting with a null verbalizer")
fig.xaxis.axis_label = "training subset size"
fig.yaxis.axis_label = task_metrics[task]
fig.circle(training_points, clf_results, color=clf_colors[0], legend="head run")
fig.circle(training_points, pvp_results, color=pvp_colors[0], legend="prompting run")
fig.circle(training_points, ctl_results, color=ctl_colors[0], legend="null verbalizer run")
fig.line(training_points, clf_results, color=clf_colors[0], alpha=1)
fig.line(training_points, pvp_results, color=pvp_colors[0], alpha=1)
fig.line(training_points, ctl_results, color=ctl_colors[0], alpha=1)
fig.patch(
[training_points[0], training_points[0], training_points[-1], training_points[-1]],
[overlapping_range[0], overlapping_range[1], overlapping_range[1], overlapping_range[0]],
color="black",
fill_alpha=0,
line_width=0,
legend="comparison region",
hatch_alpha=0.14,
hatch_scale=40,
hatch_pattern="/",
)
band = Polygon(
[
(training_points[0], overlapping_range[0]),
(training_points[0], overlapping_range[1]),
(training_points[-1], overlapping_range[1]),
(training_points[-1], overlapping_range[0]),
]
)
full_band = Polygon(
[
(training_points[0], full_range[0]),
(training_points[0], full_range[1]),
(training_points[-1], full_range[1]),
(training_points[-1], full_range[0]),
]
)
clf_polygon = intersection_with_range(training_points, clf_results, band)
pvp_polygon = intersection_with_range(training_points, pvp_results, band)
ctl_polygon = intersection_with_range(training_points, ctl_results, band)
full_clf_polygon = intersection_with_range(training_points, clf_results, full_band)
full_pvp_polygon = intersection_with_range(training_points, pvp_results, full_band)
full_ctl_polygon = intersection_with_range(training_points, ctl_results, full_band)
clf_inside_area = clf_polygon.difference(ctl_polygon)
pvp_inside_area = pvp_polygon.difference(clf_polygon).difference(ctl_polygon)
ctl_inside_area = ctl_polygon.difference(clf_polygon)
clf_outside_area = (full_clf_polygon.difference(full_ctl_polygon)).difference(clf_inside_area)
pvp_outside_area = (full_pvp_polygon.difference(full_clf_polygon).difference(ctl_polygon)).difference(
pvp_inside_area
)
ctl_outside_area = (full_ctl_polygon.difference(full_clf_polygon)).difference(pvp_inside_area)
fill_polygon(
fig, clf_inside_area, clf_colors[1], alpha=0.4, label="head advantage" if task == "WiC" else None
)
fill_polygon(fig, pvp_inside_area, pvp_colors[1], alpha=0.4, label="prompting advantage")
fill_polygon(fig, ctl_inside_area, ctl_colors[1], alpha=0.4, label="null verbalizer advantage")
fill_polygon(fig, clf_outside_area, clf_colors[1], alpha=0.13)
fill_polygon(fig, pvp_outside_area, pvp_colors[1], alpha=0.18)
fill_polygon(fig, ctl_outside_area, ctl_colors[1], alpha=0.13)
fig.line([training_points[0], training_points[-1]], [overlapping_range[0], overlapping_range[0]], color="dimgrey")
fig.line([training_points[0], training_points[-1]], [overlapping_range[1], overlapping_range[1]], color="dimgrey")
vline = Span(
location=training_points[-1], dimension="height", line_color="black", line_width=2.5, line_dash="dashed"
)
end_label = Label(
x=training_points[-1], y=middle_y, text="End of dataset", angle=90, angle_units="deg", text_align="center"
)
fig.renderers.extend([vline, end_label])
fig.legend.location = "bottom_right"
return fig
def pattern_graph(task):
fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800, x_axis_type="log", title="Performance over training subset sizes of different prompt patterns")
fig.xaxis.axis_label = "training subset size"
fig.yaxis.axis_label = task_metrics[task]
url = f"https://raw.githubusercontent.com/TevenLeScao/pet/master/exported_results/{task.lower()}/wandb_export.csv"
df = pd.read_csv(url)
expanded_training_points = np.array(list(df["training_points"]) * task_reps[task] * len(task_patterns[task]))
data = np.array(df[[naming_convention(task, seed, pattern) for pattern in task_patterns[task] for seed in
range(task_reps[task])]])
data = data.reshape(-1, task_reps[task])
col_med = np.nanmean(data, axis=1)
# Find indices that you need to replace
inds = np.where(np.isnan(data))
# Place column means in the indices. Align the arrays using take
data[inds] = np.take(col_med, inds[0])
data = data.reshape(len(df["training_points"]), -1)
data = data.transpose().reshape(-1)
data = data + np.random.normal(0, 0.01, len(data))
pattern = np.array([i // (len(data) // len(task_patterns[task])) for i in range(len(data))])
seed = np.array([0, 1, 2, 3] * (len(data) // task_reps[task]))
long_df = pd.DataFrame(np.stack((expanded_training_points, pattern, seed, data), axis=1),
columns=["training_points", "pattern", "seed", task_metrics[task]])
long_df['pattern'] = long_df['pattern'].astype(int).astype(str)
gby_pattern = long_df.groupby('pattern')
pattern_colors = ["royalblue", "darkturquoise", "darkviolet"]
for i, (pattern, pattern_df) in enumerate(gby_pattern):
gby_training_points = pattern_df.groupby('training_points')
x = [training_point for training_point, training_point_df in gby_training_points]
y_max = list([np.max(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
y_min = list([np.min(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
y = list([np.median(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
fig.circle(x, y, color=pattern_colors[i], alpha=1, legend=f"Pattern {i}")
fig.line(x, y, color=pattern_colors[i], alpha=1)
fig.varea(x=x, y1=y_max, y2=y_min, color=pattern_colors[i], alpha=0.11)
# source = ColumnDataSource(data=dict(base=x, lower=y_min, upper=y_max))
# w = Whisker(source=source, base="base", upper="upper", lower="lower", line_color=pattern_colors[i], line_alpha=0.3)
# w.upper_head.line_color = pattern_colors[i]
# w.lower_head.line_color = pattern_colors[i]
# fig.add_layout(w)
return fig
def cubic_easing(t):
if t < 0.5:
return 4 * t * t * t
p = 2 * t - 2
return 0.5 * p * p * p + 1
def circ_easing(t):
if t < 0.5:
return 0.5 * (1 - math.sqrt(1 - 4 * (t * t)))
return 0.5 * (math.sqrt(-((2 * t) - 3) * ((2 * t) - 1)) + 1)
|