Spaces:
Runtime error
Runtime error
added training notebook for colab
Browse files- notebooks/train_model.ipynb +599 -0
- scripts/train_unconditional.py +1 -3
notebooks/train_model.ipynb
ADDED
@@ -0,0 +1,599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "62c5865f",
|
6 |
+
"metadata": {
|
7 |
+
"id": "62c5865f"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "6c7800a6",
|
17 |
+
"metadata": {
|
18 |
+
"colab": {
|
19 |
+
"base_uri": "https://localhost:8080/"
|
20 |
+
},
|
21 |
+
"id": "6c7800a6",
|
22 |
+
"outputId": "ed18f4a9-ccea-4d7c-c82b-1749f1041f6c"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"try:\n",
|
27 |
+
" # are we running on Google Colab?\n",
|
28 |
+
" import google.colab\n",
|
29 |
+
" !git clone -q https://github.com/teticio/audio-diffusion.git\n",
|
30 |
+
" %cd audio-diffusion\n",
|
31 |
+
" !pip install -q -r requirements.txt .\n",
|
32 |
+
"except:\n",
|
33 |
+
" pass"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "c2fc0e7a",
|
40 |
+
"metadata": {
|
41 |
+
"id": "c2fc0e7a"
|
42 |
+
},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"from IPython.display import Audio\n",
|
46 |
+
"from audiodiffusion import AudioDiffusion"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "markdown",
|
51 |
+
"id": "MqlpL75_mDVv",
|
52 |
+
"metadata": {
|
53 |
+
"id": "MqlpL75_mDVv"
|
54 |
+
},
|
55 |
+
"source": [
|
56 |
+
"### Upload / specify audio files to train on\n",
|
57 |
+
"Provide some MP3 or WAV files that will be split into samples and converted to Mel spectrograms. For a resolution of 256, the samples will be about 5 seconds long."
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"id": "jg1zAHVsmCBG",
|
64 |
+
"metadata": {
|
65 |
+
"colab": {
|
66 |
+
"base_uri": "https://localhost:8080/",
|
67 |
+
"height": 73
|
68 |
+
},
|
69 |
+
"id": "jg1zAHVsmCBG",
|
70 |
+
"outputId": "414244c9-02b6-4ccf-cbfd-83f9022a0fc1"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"try:\n",
|
75 |
+
" # are we running on Google Colab?\n",
|
76 |
+
" from google.colab import files\n",
|
77 |
+
" input_dir = '.'\n",
|
78 |
+
" files.upload();\n",
|
79 |
+
"except:\n",
|
80 |
+
" input_dir = \"/home/teticio/Music/liked\""
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"id": "10v0RCSUu75P",
|
86 |
+
"metadata": {
|
87 |
+
"id": "10v0RCSUu75P"
|
88 |
+
},
|
89 |
+
"source": [
|
90 |
+
"### Prepare dataset"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"id": "NJNeEU6ftaTM",
|
97 |
+
"metadata": {
|
98 |
+
"colab": {
|
99 |
+
"base_uri": "https://localhost:8080/"
|
100 |
+
},
|
101 |
+
"id": "NJNeEU6ftaTM",
|
102 |
+
"outputId": "6c5bed15-c821-4def-eb90-3ab1a17b3c3d"
|
103 |
+
},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"!python scripts/audio_to_images.py \\\n",
|
107 |
+
" --resolution 256,256 \\\n",
|
108 |
+
" --input_dir {input_dir} \\\n",
|
109 |
+
" --output_dir data"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "markdown",
|
114 |
+
"id": "5mGeXyJFvQCO",
|
115 |
+
"metadata": {
|
116 |
+
"id": "5mGeXyJFvQCO"
|
117 |
+
},
|
118 |
+
"source": [
|
119 |
+
"### Train model\n",
|
120 |
+
"The DDIM scheduler generates samples much faster."
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": null,
|
126 |
+
"id": "JGnlePbLvTOH",
|
127 |
+
"metadata": {
|
128 |
+
"colab": {
|
129 |
+
"base_uri": "https://localhost:8080/"
|
130 |
+
},
|
131 |
+
"id": "JGnlePbLvTOH",
|
132 |
+
"outputId": "69b6f53e-25a3-4c59-e205-2eab42889cd8"
|
133 |
+
},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"!python scripts/train_unconditional.py \\\n",
|
137 |
+
" --dataset_name data \\\n",
|
138 |
+
" --output_dir model \\\n",
|
139 |
+
" --num_epochs 10 \\\n",
|
140 |
+
" --train_batch_size 2 \\\n",
|
141 |
+
" --eval_batch_size 2 \\\n",
|
142 |
+
" --gradient_accumulation_steps 8 \\\n",
|
143 |
+
" --save_images_epochs 100 \\\n",
|
144 |
+
" --save_model_epochs 1 \\\n",
|
145 |
+
" --scheduler ddim"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"id": "nTMAYEtMxtt0",
|
151 |
+
"metadata": {
|
152 |
+
"id": "nTMAYEtMxtt0"
|
153 |
+
},
|
154 |
+
"source": [
|
155 |
+
"### Generate samples with model"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": null,
|
161 |
+
"id": "b294a94a",
|
162 |
+
"metadata": {
|
163 |
+
"id": "b294a94a"
|
164 |
+
},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"audio_diffusion = AudioDiffusion('model')"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"id": "k2bKq3aqyAIM",
|
174 |
+
"metadata": {
|
175 |
+
"colab": {
|
176 |
+
"base_uri": "https://localhost:8080/",
|
177 |
+
"height": 363,
|
178 |
+
"referenced_widgets": [
|
179 |
+
"474d4db933d54e0497da4076a7fe135b",
|
180 |
+
"a849a3a1b46947db830a6a087411ec68",
|
181 |
+
"378f819239274ac88d913714bc27bf06",
|
182 |
+
"cc3b33e508744206955b26a417fbbdec",
|
183 |
+
"6015e5a9e6774e9abf7db273bca57363",
|
184 |
+
"629c21c68d22447185bb961e22bce4a6",
|
185 |
+
"2d5abefbc2ed4b72aed8c4f8ddc7a00c",
|
186 |
+
"11d1dbae00764a1c9dcc899c0b0f67dc",
|
187 |
+
"acdb5ddc7bda411a948689787b18b21e",
|
188 |
+
"9c4955f9d0f443a7b28ed827c5cdb37f",
|
189 |
+
"f9a1a976d82148f8961e80c357bc2764"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"id": "k2bKq3aqyAIM",
|
193 |
+
"outputId": "d48238fe-ae36-4736-e67b-b69e3729304a"
|
194 |
+
},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio()\n",
|
198 |
+
"display(image)\n",
|
199 |
+
"display(Audio(audio, rate=sample_rate))"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"id": "K2qAIJzg2DNK",
|
206 |
+
"metadata": {
|
207 |
+
"id": "K2qAIJzg2DNK"
|
208 |
+
},
|
209 |
+
"outputs": [],
|
210 |
+
"source": []
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"metadata": {
|
214 |
+
"accelerator": "GPU",
|
215 |
+
"colab": {
|
216 |
+
"collapsed_sections": [],
|
217 |
+
"provenance": []
|
218 |
+
},
|
219 |
+
"gpuClass": "standard",
|
220 |
+
"kernelspec": {
|
221 |
+
"display_name": "huggingface",
|
222 |
+
"language": "python",
|
223 |
+
"name": "huggingface"
|
224 |
+
},
|
225 |
+
"language_info": {
|
226 |
+
"codemirror_mode": {
|
227 |
+
"name": "ipython",
|
228 |
+
"version": 3
|
229 |
+
},
|
230 |
+
"file_extension": ".py",
|
231 |
+
"mimetype": "text/x-python",
|
232 |
+
"name": "python",
|
233 |
+
"nbconvert_exporter": "python",
|
234 |
+
"pygments_lexer": "ipython3",
|
235 |
+
"version": "3.10.6"
|
236 |
+
},
|
237 |
+
"toc": {
|
238 |
+
"base_numbering": 1,
|
239 |
+
"nav_menu": {},
|
240 |
+
"number_sections": true,
|
241 |
+
"sideBar": true,
|
242 |
+
"skip_h1_title": false,
|
243 |
+
"title_cell": "Table of Contents",
|
244 |
+
"title_sidebar": "Contents",
|
245 |
+
"toc_cell": false,
|
246 |
+
"toc_position": {},
|
247 |
+
"toc_section_display": true,
|
248 |
+
"toc_window_display": false
|
249 |
+
},
|
250 |
+
"widgets": {
|
251 |
+
"application/vnd.jupyter.widget-state+json": {
|
252 |
+
"11d1dbae00764a1c9dcc899c0b0f67dc": {
|
253 |
+
"model_module": "@jupyter-widgets/base",
|
254 |
+
"model_module_version": "1.2.0",
|
255 |
+
"model_name": "LayoutModel",
|
256 |
+
"state": {
|
257 |
+
"_model_module": "@jupyter-widgets/base",
|
258 |
+
"_model_module_version": "1.2.0",
|
259 |
+
"_model_name": "LayoutModel",
|
260 |
+
"_view_count": null,
|
261 |
+
"_view_module": "@jupyter-widgets/base",
|
262 |
+
"_view_module_version": "1.2.0",
|
263 |
+
"_view_name": "LayoutView",
|
264 |
+
"align_content": null,
|
265 |
+
"align_items": null,
|
266 |
+
"align_self": null,
|
267 |
+
"border": null,
|
268 |
+
"bottom": null,
|
269 |
+
"display": null,
|
270 |
+
"flex": null,
|
271 |
+
"flex_flow": null,
|
272 |
+
"grid_area": null,
|
273 |
+
"grid_auto_columns": null,
|
274 |
+
"grid_auto_flow": null,
|
275 |
+
"grid_auto_rows": null,
|
276 |
+
"grid_column": null,
|
277 |
+
"grid_gap": null,
|
278 |
+
"grid_row": null,
|
279 |
+
"grid_template_areas": null,
|
280 |
+
"grid_template_columns": null,
|
281 |
+
"grid_template_rows": null,
|
282 |
+
"height": null,
|
283 |
+
"justify_content": null,
|
284 |
+
"justify_items": null,
|
285 |
+
"left": null,
|
286 |
+
"margin": null,
|
287 |
+
"max_height": null,
|
288 |
+
"max_width": null,
|
289 |
+
"min_height": null,
|
290 |
+
"min_width": null,
|
291 |
+
"object_fit": null,
|
292 |
+
"object_position": null,
|
293 |
+
"order": null,
|
294 |
+
"overflow": null,
|
295 |
+
"overflow_x": null,
|
296 |
+
"overflow_y": null,
|
297 |
+
"padding": null,
|
298 |
+
"right": null,
|
299 |
+
"top": null,
|
300 |
+
"visibility": null,
|
301 |
+
"width": null
|
302 |
+
}
|
303 |
+
},
|
304 |
+
"2d5abefbc2ed4b72aed8c4f8ddc7a00c": {
|
305 |
+
"model_module": "@jupyter-widgets/controls",
|
306 |
+
"model_module_version": "1.5.0",
|
307 |
+
"model_name": "DescriptionStyleModel",
|
308 |
+
"state": {
|
309 |
+
"_model_module": "@jupyter-widgets/controls",
|
310 |
+
"_model_module_version": "1.5.0",
|
311 |
+
"_model_name": "DescriptionStyleModel",
|
312 |
+
"_view_count": null,
|
313 |
+
"_view_module": "@jupyter-widgets/base",
|
314 |
+
"_view_module_version": "1.2.0",
|
315 |
+
"_view_name": "StyleView",
|
316 |
+
"description_width": ""
|
317 |
+
}
|
318 |
+
},
|
319 |
+
"378f819239274ac88d913714bc27bf06": {
|
320 |
+
"model_module": "@jupyter-widgets/controls",
|
321 |
+
"model_module_version": "1.5.0",
|
322 |
+
"model_name": "FloatProgressModel",
|
323 |
+
"state": {
|
324 |
+
"_dom_classes": [],
|
325 |
+
"_model_module": "@jupyter-widgets/controls",
|
326 |
+
"_model_module_version": "1.5.0",
|
327 |
+
"_model_name": "FloatProgressModel",
|
328 |
+
"_view_count": null,
|
329 |
+
"_view_module": "@jupyter-widgets/controls",
|
330 |
+
"_view_module_version": "1.5.0",
|
331 |
+
"_view_name": "ProgressView",
|
332 |
+
"bar_style": "success",
|
333 |
+
"description": "",
|
334 |
+
"description_tooltip": null,
|
335 |
+
"layout": "IPY_MODEL_11d1dbae00764a1c9dcc899c0b0f67dc",
|
336 |
+
"max": 50,
|
337 |
+
"min": 0,
|
338 |
+
"orientation": "horizontal",
|
339 |
+
"style": "IPY_MODEL_acdb5ddc7bda411a948689787b18b21e",
|
340 |
+
"value": 50
|
341 |
+
}
|
342 |
+
},
|
343 |
+
"474d4db933d54e0497da4076a7fe135b": {
|
344 |
+
"model_module": "@jupyter-widgets/controls",
|
345 |
+
"model_module_version": "1.5.0",
|
346 |
+
"model_name": "HBoxModel",
|
347 |
+
"state": {
|
348 |
+
"_dom_classes": [],
|
349 |
+
"_model_module": "@jupyter-widgets/controls",
|
350 |
+
"_model_module_version": "1.5.0",
|
351 |
+
"_model_name": "HBoxModel",
|
352 |
+
"_view_count": null,
|
353 |
+
"_view_module": "@jupyter-widgets/controls",
|
354 |
+
"_view_module_version": "1.5.0",
|
355 |
+
"_view_name": "HBoxView",
|
356 |
+
"box_style": "",
|
357 |
+
"children": [
|
358 |
+
"IPY_MODEL_a849a3a1b46947db830a6a087411ec68",
|
359 |
+
"IPY_MODEL_378f819239274ac88d913714bc27bf06",
|
360 |
+
"IPY_MODEL_cc3b33e508744206955b26a417fbbdec"
|
361 |
+
],
|
362 |
+
"layout": "IPY_MODEL_6015e5a9e6774e9abf7db273bca57363"
|
363 |
+
}
|
364 |
+
},
|
365 |
+
"6015e5a9e6774e9abf7db273bca57363": {
|
366 |
+
"model_module": "@jupyter-widgets/base",
|
367 |
+
"model_module_version": "1.2.0",
|
368 |
+
"model_name": "LayoutModel",
|
369 |
+
"state": {
|
370 |
+
"_model_module": "@jupyter-widgets/base",
|
371 |
+
"_model_module_version": "1.2.0",
|
372 |
+
"_model_name": "LayoutModel",
|
373 |
+
"_view_count": null,
|
374 |
+
"_view_module": "@jupyter-widgets/base",
|
375 |
+
"_view_module_version": "1.2.0",
|
376 |
+
"_view_name": "LayoutView",
|
377 |
+
"align_content": null,
|
378 |
+
"align_items": null,
|
379 |
+
"align_self": null,
|
380 |
+
"border": null,
|
381 |
+
"bottom": null,
|
382 |
+
"display": null,
|
383 |
+
"flex": null,
|
384 |
+
"flex_flow": null,
|
385 |
+
"grid_area": null,
|
386 |
+
"grid_auto_columns": null,
|
387 |
+
"grid_auto_flow": null,
|
388 |
+
"grid_auto_rows": null,
|
389 |
+
"grid_column": null,
|
390 |
+
"grid_gap": null,
|
391 |
+
"grid_row": null,
|
392 |
+
"grid_template_areas": null,
|
393 |
+
"grid_template_columns": null,
|
394 |
+
"grid_template_rows": null,
|
395 |
+
"height": null,
|
396 |
+
"justify_content": null,
|
397 |
+
"justify_items": null,
|
398 |
+
"left": null,
|
399 |
+
"margin": null,
|
400 |
+
"max_height": null,
|
401 |
+
"max_width": null,
|
402 |
+
"min_height": null,
|
403 |
+
"min_width": null,
|
404 |
+
"object_fit": null,
|
405 |
+
"object_position": null,
|
406 |
+
"order": null,
|
407 |
+
"overflow": null,
|
408 |
+
"overflow_x": null,
|
409 |
+
"overflow_y": null,
|
410 |
+
"padding": null,
|
411 |
+
"right": null,
|
412 |
+
"top": null,
|
413 |
+
"visibility": null,
|
414 |
+
"width": null
|
415 |
+
}
|
416 |
+
},
|
417 |
+
"629c21c68d22447185bb961e22bce4a6": {
|
418 |
+
"model_module": "@jupyter-widgets/base",
|
419 |
+
"model_module_version": "1.2.0",
|
420 |
+
"model_name": "LayoutModel",
|
421 |
+
"state": {
|
422 |
+
"_model_module": "@jupyter-widgets/base",
|
423 |
+
"_model_module_version": "1.2.0",
|
424 |
+
"_model_name": "LayoutModel",
|
425 |
+
"_view_count": null,
|
426 |
+
"_view_module": "@jupyter-widgets/base",
|
427 |
+
"_view_module_version": "1.2.0",
|
428 |
+
"_view_name": "LayoutView",
|
429 |
+
"align_content": null,
|
430 |
+
"align_items": null,
|
431 |
+
"align_self": null,
|
432 |
+
"border": null,
|
433 |
+
"bottom": null,
|
434 |
+
"display": null,
|
435 |
+
"flex": null,
|
436 |
+
"flex_flow": null,
|
437 |
+
"grid_area": null,
|
438 |
+
"grid_auto_columns": null,
|
439 |
+
"grid_auto_flow": null,
|
440 |
+
"grid_auto_rows": null,
|
441 |
+
"grid_column": null,
|
442 |
+
"grid_gap": null,
|
443 |
+
"grid_row": null,
|
444 |
+
"grid_template_areas": null,
|
445 |
+
"grid_template_columns": null,
|
446 |
+
"grid_template_rows": null,
|
447 |
+
"height": null,
|
448 |
+
"justify_content": null,
|
449 |
+
"justify_items": null,
|
450 |
+
"left": null,
|
451 |
+
"margin": null,
|
452 |
+
"max_height": null,
|
453 |
+
"max_width": null,
|
454 |
+
"min_height": null,
|
455 |
+
"min_width": null,
|
456 |
+
"object_fit": null,
|
457 |
+
"object_position": null,
|
458 |
+
"order": null,
|
459 |
+
"overflow": null,
|
460 |
+
"overflow_x": null,
|
461 |
+
"overflow_y": null,
|
462 |
+
"padding": null,
|
463 |
+
"right": null,
|
464 |
+
"top": null,
|
465 |
+
"visibility": null,
|
466 |
+
"width": null
|
467 |
+
}
|
468 |
+
},
|
469 |
+
"9c4955f9d0f443a7b28ed827c5cdb37f": {
|
470 |
+
"model_module": "@jupyter-widgets/base",
|
471 |
+
"model_module_version": "1.2.0",
|
472 |
+
"model_name": "LayoutModel",
|
473 |
+
"state": {
|
474 |
+
"_model_module": "@jupyter-widgets/base",
|
475 |
+
"_model_module_version": "1.2.0",
|
476 |
+
"_model_name": "LayoutModel",
|
477 |
+
"_view_count": null,
|
478 |
+
"_view_module": "@jupyter-widgets/base",
|
479 |
+
"_view_module_version": "1.2.0",
|
480 |
+
"_view_name": "LayoutView",
|
481 |
+
"align_content": null,
|
482 |
+
"align_items": null,
|
483 |
+
"align_self": null,
|
484 |
+
"border": null,
|
485 |
+
"bottom": null,
|
486 |
+
"display": null,
|
487 |
+
"flex": null,
|
488 |
+
"flex_flow": null,
|
489 |
+
"grid_area": null,
|
490 |
+
"grid_auto_columns": null,
|
491 |
+
"grid_auto_flow": null,
|
492 |
+
"grid_auto_rows": null,
|
493 |
+
"grid_column": null,
|
494 |
+
"grid_gap": null,
|
495 |
+
"grid_row": null,
|
496 |
+
"grid_template_areas": null,
|
497 |
+
"grid_template_columns": null,
|
498 |
+
"grid_template_rows": null,
|
499 |
+
"height": null,
|
500 |
+
"justify_content": null,
|
501 |
+
"justify_items": null,
|
502 |
+
"left": null,
|
503 |
+
"margin": null,
|
504 |
+
"max_height": null,
|
505 |
+
"max_width": null,
|
506 |
+
"min_height": null,
|
507 |
+
"min_width": null,
|
508 |
+
"object_fit": null,
|
509 |
+
"object_position": null,
|
510 |
+
"order": null,
|
511 |
+
"overflow": null,
|
512 |
+
"overflow_x": null,
|
513 |
+
"overflow_y": null,
|
514 |
+
"padding": null,
|
515 |
+
"right": null,
|
516 |
+
"top": null,
|
517 |
+
"visibility": null,
|
518 |
+
"width": null
|
519 |
+
}
|
520 |
+
},
|
521 |
+
"a849a3a1b46947db830a6a087411ec68": {
|
522 |
+
"model_module": "@jupyter-widgets/controls",
|
523 |
+
"model_module_version": "1.5.0",
|
524 |
+
"model_name": "HTMLModel",
|
525 |
+
"state": {
|
526 |
+
"_dom_classes": [],
|
527 |
+
"_model_module": "@jupyter-widgets/controls",
|
528 |
+
"_model_module_version": "1.5.0",
|
529 |
+
"_model_name": "HTMLModel",
|
530 |
+
"_view_count": null,
|
531 |
+
"_view_module": "@jupyter-widgets/controls",
|
532 |
+
"_view_module_version": "1.5.0",
|
533 |
+
"_view_name": "HTMLView",
|
534 |
+
"description": "",
|
535 |
+
"description_tooltip": null,
|
536 |
+
"layout": "IPY_MODEL_629c21c68d22447185bb961e22bce4a6",
|
537 |
+
"placeholder": "",
|
538 |
+
"style": "IPY_MODEL_2d5abefbc2ed4b72aed8c4f8ddc7a00c",
|
539 |
+
"value": "100%"
|
540 |
+
}
|
541 |
+
},
|
542 |
+
"acdb5ddc7bda411a948689787b18b21e": {
|
543 |
+
"model_module": "@jupyter-widgets/controls",
|
544 |
+
"model_module_version": "1.5.0",
|
545 |
+
"model_name": "ProgressStyleModel",
|
546 |
+
"state": {
|
547 |
+
"_model_module": "@jupyter-widgets/controls",
|
548 |
+
"_model_module_version": "1.5.0",
|
549 |
+
"_model_name": "ProgressStyleModel",
|
550 |
+
"_view_count": null,
|
551 |
+
"_view_module": "@jupyter-widgets/base",
|
552 |
+
"_view_module_version": "1.2.0",
|
553 |
+
"_view_name": "StyleView",
|
554 |
+
"bar_color": null,
|
555 |
+
"description_width": ""
|
556 |
+
}
|
557 |
+
},
|
558 |
+
"cc3b33e508744206955b26a417fbbdec": {
|
559 |
+
"model_module": "@jupyter-widgets/controls",
|
560 |
+
"model_module_version": "1.5.0",
|
561 |
+
"model_name": "HTMLModel",
|
562 |
+
"state": {
|
563 |
+
"_dom_classes": [],
|
564 |
+
"_model_module": "@jupyter-widgets/controls",
|
565 |
+
"_model_module_version": "1.5.0",
|
566 |
+
"_model_name": "HTMLModel",
|
567 |
+
"_view_count": null,
|
568 |
+
"_view_module": "@jupyter-widgets/controls",
|
569 |
+
"_view_module_version": "1.5.0",
|
570 |
+
"_view_name": "HTMLView",
|
571 |
+
"description": "",
|
572 |
+
"description_tooltip": null,
|
573 |
+
"layout": "IPY_MODEL_9c4955f9d0f443a7b28ed827c5cdb37f",
|
574 |
+
"placeholder": "",
|
575 |
+
"style": "IPY_MODEL_f9a1a976d82148f8961e80c357bc2764",
|
576 |
+
"value": " 50/50 [00:07<00:00, 8.13it/s]"
|
577 |
+
}
|
578 |
+
},
|
579 |
+
"f9a1a976d82148f8961e80c357bc2764": {
|
580 |
+
"model_module": "@jupyter-widgets/controls",
|
581 |
+
"model_module_version": "1.5.0",
|
582 |
+
"model_name": "DescriptionStyleModel",
|
583 |
+
"state": {
|
584 |
+
"_model_module": "@jupyter-widgets/controls",
|
585 |
+
"_model_module_version": "1.5.0",
|
586 |
+
"_model_name": "DescriptionStyleModel",
|
587 |
+
"_view_count": null,
|
588 |
+
"_view_module": "@jupyter-widgets/base",
|
589 |
+
"_view_module_version": "1.2.0",
|
590 |
+
"_view_name": "StyleView",
|
591 |
+
"description_width": ""
|
592 |
+
}
|
593 |
+
}
|
594 |
+
}
|
595 |
+
}
|
596 |
+
},
|
597 |
+
"nbformat": 4,
|
598 |
+
"nbformat_minor": 5
|
599 |
+
}
|
scripts/train_unconditional.py
CHANGED
@@ -277,9 +277,7 @@ def main(args):
|
|
277 |
else:
|
278 |
pipeline.save_pretrained(output_dir)
|
279 |
|
280 |
-
if (
|
281 |
-
epoch + 1
|
282 |
-
) % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
|
283 |
generator = torch.manual_seed(42)
|
284 |
# run pipeline in inference (sample random noise and denoise)
|
285 |
images, (sample_rate, audios) = pipeline(
|
|
|
277 |
else:
|
278 |
pipeline.save_pretrained(output_dir)
|
279 |
|
280 |
+
if (epoch + 1) % args.save_images_epochs == 0:
|
|
|
|
|
281 |
generator = torch.manual_seed(42)
|
282 |
# run pipeline in inference (sample random noise and denoise)
|
283 |
images, (sample_rate, audios) = pipeline(
|