import datetime from urllib.request import Request, urlopen from pypdf import PdfReader from io import StringIO import io import pandas as pd import os import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline from openai import OpenAI from groq import Groq import time import json from openai import OpenAI openai_key = "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" client = OpenAI(api_key = openai_key) desc = pd.read_excel('Descriptor.xlsx',header = None) desc_list = desc.iloc[:,0].to_list() def callAzure(prompt,text): url = "https://Meta-Llama-3-70B-Instruct-fkqip-serverless.eastus2.inference.ai.azure.com" api_key = "o5yaLhTIvg0s5zuYVInBpyneEZO8oonY" client = OpenAI(base_url=url, api_key=api_key) msg = "{} {}".format(prompt, text) response = client.chat.completions.create( messages=[ { "role": "user", "content": msg, } ], model="azureai", max_tokens = 1000 ) return response.choices[0].message.content def filter(input_json): sym = pd.read_excel('symbol.xlsx',header = None) sym_list = sym.iloc[:,0].to_list() if input_json['FileURL']==None or input_json['FileURL'].lower()=='null': return [0,"File_URL"] if input_json['symbol']== 'null' or input_json['symbol'] not in sym_list: return [0,"symbol"] if input_json['TypeofAnnouncement'] not in ['General_Announcements','Outcome','General']: return [0,"Annoucement"] if input_json['Descriptor'] not in desc_list: return [0,"Desc"] url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1] req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) html = urlopen(req) cont = html.read() reader = PdfReader(io.BytesIO(cont)) content = '' for i in range(len(reader.pages)): content+= reader.pages[i].extract_text() document = content return [1, document] def summary(input_json): prompt = pd.read_excel('DescriptorPrompt.xlsx') promptShort = prompt.iloc[:,1].to_list() promptLong = prompt.iloc[:,2].to_list() output = {} filtering_results = filter(input_json) if filtering_results[0] == 0: #return 0 return filtering_results[1] id = desc_list.index(input_json['Descriptor']) long_text = filtering_results[1] long_text = long_text.lstrip() long_text = long_text.rstrip() long_text = long_text[:6000] url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1] output["Link to BSE website"] = url output["Date of time of receiving data from BSE"] = input_json["newsdate"] + "Z" output["Stock Ticker"] = input_json['symbol'] answer = callAzure("You are an financial expert. Wherever possible, mention the name of the company " + promptShort[id] + " Do not exceed over 400 characters", long_text) try: idx = answer.index("\n") except: idx = -2 output['Short Summary'] = answer[idx+2:] answer = callAzure("Make sure the following summary of a news article is not more than 80 words. Rewrite it and make it below 80 words ", output['Short Summary']) try: idx = answer.index("\n") except: idx = -2 output['Short Summary'] = answer[idx+2:] prompt = "Answer in 1 word only. Financial SEO tag for this news article. Nothing more than that" answer = callAzure(prompt, output['Short Summary']) output['Tag'] = answer prompt = "Answer in single sentence. A headline for this News Article. Nothing more than that" answer = callAzure(prompt, output['Short Summary']) output['Headline'] = answer utc_now = datetime.datetime.utcnow() ist_now = utc_now.astimezone(datetime.timezone(datetime.timedelta(hours=5, minutes=30))) Date = ist_now.strftime("%Y-%m-%d") time = ist_now.strftime("%X") output['Date and time of data delivery from Skylark'] = Date+"T"+time+"Z" prompt = "Answer in one word the sentiment of this News out of Positive, Negative or Neutral {}" output['Sentiment'] = callAzure(prompt, output['Short Summary']) completion = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": "You are a financial expert. Help the client with summarizing the financial newsletter. Write the summary in max 500 words. Do not truncate."}, {"role": "user", "content": "{} {}".format(promptLong[id], long_text)} ], temperature=0, max_tokens=4000, ) output['Long summary'] = completion.choices[0].message.content # response = client.images.generate( # model="dall-e-3", # prompt=headline.text, # size="1024x1024", # quality="standard", # n=1 # ) # output["Link to Infographic (data visualization only)] = response.data[0].url return output