SongGeneration / tools /gradio /levo_inference_lowmem.py
waytan22's picture
fix some typo
93f7efb
import os
import sys
import torch
import json
import numpy as np
from omegaconf import OmegaConf
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from codeclm.models import builders
from separator import Separator
class LeVoInference(torch.nn.Module):
def __init__(self, ckpt_path):
super().__init__()
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: 'default')
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
cfg_path = os.path.join(ckpt_path, 'config.yaml')
self.pt_path = os.path.join(ckpt_path, 'model.pt')
self.cfg = OmegaConf.load(cfg_path)
self.cfg.mode = 'inference'
self.max_duration = self.cfg.max_dur
self.default_params = dict(
top_p = 0.0,
record_tokens = True,
record_window = 50,
extend_stride = 5,
duration = self.max_duration,
)
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
separator = Separator()
audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
audio_tokenizer = audio_tokenizer.eval().cuda()
seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
seperate_tokenizer = seperate_tokenizer.eval().cuda()
pmt_wav, vocal_wav, bgm_wav = separator.run(prompt_audio_path)
pmt_wav = pmt_wav.cuda()
vocal_wav = vocal_wav.cuda()
bgm_wav = bgm_wav.cuda()
pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
melody_is_wav = False
melody_is_wav = False
del audio_tokenizer
del seperate_tokenizer
del separator
elif genre is not None and auto_prompt_path is not None:
auto_prompt = torch.load(auto_prompt_path)
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
if genre == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
model_light = CodecLM_PL(self.cfg, self.pt_path)
model_light = model_light.eval()
model_light.audiolm.cfg = self.cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = None,
max_duration = self.max_duration,
seperate_tokenizer = None,
)
del model_light
model.lm = model.lm.cuda().to(torch.float16)
params = {**self.default_params, **params}
model.set_generation_params(**params)
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [description],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
del model
torch.cuda.empty_cache()
seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
seperate_tokenizer = seperate_tokenizer.eval().cuda()
model = CodecLM(name = "tmp",
lm = None,
audiotokenizer = None,
max_duration = self.max_duration,
seperate_tokenizer = seperate_tokenizer,
)
if tokens.shape[-1] > 3000:
tokens = tokens[..., :3000]
with torch.no_grad():
if melody_is_wav:
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
else:
wav_seperate = model.generate_audio(tokens)
del seperate_tokenizer
del model
torch.cuda.empty_cache()
return wav_seperate[0]