Upload 3 files
Browse files- Dockerfile +19 -0
- app.py +44 -0
- best.pt +3 -0
Dockerfile
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY . /app
|
6 |
+
|
7 |
+
RUN pip3 install fastapi uvicorn pydantic ultralytics pillow
|
8 |
+
RUN useradd -m -u 1000 user
|
9 |
+
|
10 |
+
USER user
|
11 |
+
|
12 |
+
ENV HOME=/home/user \
|
13 |
+
PATH=/home/user/.local/bin:$PATH
|
14 |
+
|
15 |
+
WORKDIR $HOME/app
|
16 |
+
|
17 |
+
COPY --chown=user . $HOME/app
|
18 |
+
|
19 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Load the YOLO model
|
11 |
+
model = YOLO(r'best.pt')
|
12 |
+
|
13 |
+
class ImageData(BaseModel):
|
14 |
+
image_base64: str
|
15 |
+
|
16 |
+
@app.post("/process_image/")
|
17 |
+
async def process_image(data: ImageData):
|
18 |
+
try:
|
19 |
+
# Decode the base64 string to an image
|
20 |
+
image_data = base64.b64decode(data.image_base64)
|
21 |
+
image = Image.open(io.BytesIO(image_data))
|
22 |
+
|
23 |
+
# Process the image with YOLO
|
24 |
+
results = model(image)
|
25 |
+
result = results[0]
|
26 |
+
|
27 |
+
# Extract bounding boxes and confidence scores
|
28 |
+
boxes = result.boxes.xyxy # Bounding box coordinates
|
29 |
+
scores = result.boxes.conf # Confidence scores
|
30 |
+
|
31 |
+
if len(boxes) > 0:
|
32 |
+
# Get the index of the bounding box with the highest score
|
33 |
+
highest_score_idx = scores.argmax()
|
34 |
+
# Extract the bounding box with the highest score
|
35 |
+
highest_score_box = boxes[highest_score_idx].tolist()
|
36 |
+
x1, y1, x2, y2 = map(int, highest_score_box) # Convert to integers
|
37 |
+
else:
|
38 |
+
# If no boxes, return the whole image dimensions
|
39 |
+
x1, y1, x2, y2 = 0, 0, image.width, image.height
|
40 |
+
|
41 |
+
return {"x1": x1, "y1": y1, "x2": x2, "y2": y2}
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
raise HTTPException(status_code=500, detail=str(e))
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10420dfe7db4c88e5bd446f604c3b97e99322962e22e1898ad4d2f325e9b2a3a
|
3 |
+
size 52177122
|