# Adapted from Open-Sora-Plan # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan # -------------------------------------------------------- from typing import Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from .attention import TemporalAttnBlock from .block import Block from .conv import CausalConv3d from .normalize import Normalize from .ops import cast_tuple, video_to_image from .resnet_block import ResnetBlock3D class Upsample(Block): def __init__(self, in_channels, out_channels): super().__init__() self.with_conv = True if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) @video_to_image def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(Block): def __init__(self, in_channels, out_channels): super().__init__() self.with_conv = True if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0) @video_to_image def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class SpatialDownsample2x(Block): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int]] = (3, 3), stride: Union[int, Tuple[int]] = (2, 2), ): super().__init__() kernel_size = cast_tuple(kernel_size, 2) stride = cast_tuple(stride, 2) self.chan_in = chan_in self.chan_out = chan_out self.kernel_size = kernel_size self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=0) def forward(self, x): pad = (0, 1, 0, 1, 0, 0) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) return x class SpatialUpsample2x(Block): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int]] = (3, 3), stride: Union[int, Tuple[int]] = (1, 1), ): super().__init__() self.chan_in = chan_in self.chan_out = chan_out self.kernel_size = kernel_size self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=1) def forward(self, x): t = x.shape[2] x = rearrange(x, "b c t h w -> b (c t) h w") x = F.interpolate(x, scale_factor=(2, 2), mode="nearest") x = rearrange(x, "b (c t) h w -> b c t h w", t=t) x = self.conv(x) return x class TimeDownsample2x(Block): def __init__(self, chan_in, chan_out, kernel_size: int = 3): super().__init__() self.kernel_size = kernel_size self.conv = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) def forward(self, x): first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) return self.conv(x) class TimeUpsample2x(Block): def __init__(self, chan_in, chan_out): super().__init__() def forward(self, x): if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) return x class TimeDownsampleRes2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 2.0, ): super().__init__() self.kernel_size = cast_tuple(kernel_size, 3) self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1)) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): alpha = torch.sigmoid(self.mix_factor) first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(x) class TimeUpsampleRes2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 2.0, ): super().__init__() self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): alpha = torch.sigmoid(self.mix_factor) if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) return alpha * x + (1 - alpha) * self.conv(x) class TimeDownsampleResAdv2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 1.5, ): super().__init__() self.kernel_size = cast_tuple(kernel_size, 3) self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) self.attn = TemporalAttnBlock(in_channels) self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0) self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1)) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) alpha = torch.sigmoid(self.mix_factor) return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(self.attn((self.res(x)))) class TimeUpsampleResAdv2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 1.5, ): super().__init__() self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0) self.attn = TemporalAttnBlock(in_channels) self.norm = Normalize(in_channels=in_channels) self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) alpha = torch.sigmoid(self.mix_factor) return alpha * x + (1 - alpha) * self.conv(self.attn(self.res(x)))