File size: 7,879 Bytes
0dda2a1
 
 
6c7d766
0dda2a1
7d859ca
0dda2a1
c4a2d1f
b368e21
0dda2a1
b368e21
0dda2a1
 
 
 
 
 
 
 
 
b368e21
 
 
0dda2a1
 
b368e21
064943c
0dda2a1
 
 
 
b368e21
064943c
0dda2a1
 
011040f
 
b368e21
 
 
6febb6b
6187b6c
 
 
6c7d766
011040f
b368e21
0dda2a1
 
6c7d766
40d15f0
cfd2b5e
 
 
 
 
6c7d766
 
e6ccf57
b368e21
 
6c7d766
6187b6c
b368e21
 
 
6c7d766
 
 
 
 
 
e6741bc
 
88d2fdc
b368e21
e6741bc
88d2fdc
8f4f425
6c7d766
40d15f0
6c7d766
 
e6ccf57
6c7d766
b368e21
 
6187b6c
b368e21
 
 
6c7d766
 
 
 
 
 
7d859ca
 
 
 
 
 
 
 
 
 
 
 
 
b368e21
 
6187b6c
b368e21
 
 
7d859ca
 
 
 
 
 
6c7d766
a383d87
 
6c7d766
 
b368e21
 
6c7d766
 
e6ccf57
6c7d766
b368e21
 
6187b6c
b368e21
 
 
6c7d766
 
 
 
0dda2a1
b368e21
011040f
8f8a88e
681223f
cfd2b5e
40d15f0
011040f
40d15f0
6c7d766
 
064943c
40d15f0
b368e21
011040f
40d15f0
5ebc71d
 
b368e21
6c7d766
5ebc71d
6c7d766
 
b368e21
 
6c7d766
 
 
6febb6b
6c7d766
 
e6ccf57
b368e21
 
ac9adab
 
b9dd78c
b368e21
937bcc4
 
 
 
d9c4277
53872bd
 
 
b368e21
53872bd
 
b368e21
53872bd
 
073e47f
53872bd
 
 
937bcc4
53872bd
b368e21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import io
from functions import *
from PyPDF2 import PdfReader
import pandas as pd
from fastapi import FastAPI, File, UploadFile
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.document_loaders import UnstructuredURLLoader
from src.api.speech_api import speech_translator_router

app = FastAPI(title="ConversAI", root_path="/api/v1")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

app.include_router(speech_translator_router, prefix="/speech")


@app.post("/signup")
async def signup(username: str, password: str):
    response = createUser(username=username, password=password)
    return response


@app.post("/login")
async def login(username: str, password: str):
    response = matchPassword(username=username, password=password)
    return response


@app.post("/newChatbot")
async def newChatbot(chatbotName: str, username: str):
    currentBotCount = len(listTables(username=username)["output"])
    limit = client.table("ConversAI_UserConfig").select("chatbotLimit").eq("username", username).execute().data[0][
        "chatbotLimit"]
    if currentBotCount >= int(limit):
        return {
            "output": "CHATBOT LIMIT EXCEEDED"
        }
    client.table("ConversAI_ChatbotInfo").insert({"username": username, "chatbotname": chatbotName}).execute()
    chatbotName = f"convai-{username}-{chatbotName}"
    return createTable(tablename=chatbotName)


@app.post("/addPDF")
async def addPDFData(vectorstore: str, pdf: UploadFile = File(...)):
    pdf = await pdf.read()
    reader = PdfReader(io.BytesIO(pdf))
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    limit = client.table("ConversAI_UserConfig").select("tokenLimit").eq("username", username).execute().data[0][
        "tokenLimit"]
    newCount = currentCount + len(text)
    if newCount < int(limit):
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq(
            "chatbotname", chatbotname).execute()
        return addDocuments(text=text, vectorstore=vectorstore)
    else:
        return {
            "output": "DOCUMENT EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


@app.post("/scanAndReturnText")
async def returnText(pdf: UploadFile = File(...)):
    pdf = await pdf.read()
    text = getTextFromImagePDF(pdfBytes=pdf)
    return text


@app.post("/addText")
async def addText(vectorstore: str, text: str):
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    newCount = currentCount + len(text)
    limit = client.table("ConversAI_UserConfig").select("tokenLimit").eq("username", username).execute().data[0][
        "tokenLimit"]
    if newCount < int(limit):
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq(
            "chatbotname", chatbotname).execute()
        return addDocuments(text=text, vectorstore=vectorstore)
    else:
        return {
            "output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


class AddQAPair(BaseModel):
    vectorstore: str
    question: str
    answer: str


@app.post("/addQAPair")
async def addText(addQaPair: AddQAPair):
    username, chatbotname = addQaPair.vectorstore.split("-")[1], addQaPair.vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    qa = f"QUESTION: {addQaPair.question}\tANSWER: {addQaPair.answer}"
    newCount = currentCount + len(qa)
    limit = client.table("ConversAI_UserConfig").select("tokenLimit").eq("username", username).execute().data[0][
        "tokenLimit"]
    if newCount < int(limit):
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq(
            "chatbotname", chatbotname).execute()
        return addDocuments(text=qa, vectorstore=addQaPair.vectorstore)
    else:
        return {
            "output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


@app.post("/addWebsite")
async def addWebsite(vectorstore: str, websiteUrls: list[str]):
    urls = websiteUrls
    loader = UnstructuredURLLoader(urls=urls)
    docs = loader.load()
    text = "\n\n".join(
        [f"Metadata:\n{docs[doc].metadata} \nPage Content:\n {docs[doc].page_content}" for doc in range(len(docs))])
    username, chatbotname = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    currentCount = df[(df["username"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0]
    newCount = currentCount + len(text)
    limit = client.table("ConversAI_UserConfig").select("tokenLimit").eq("username", username).execute().data[0][
        "tokenLimit"]
    if newCount < int(limit):
        client.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("username", username).eq(
            "chatbotname", chatbotname).execute()
        return addDocuments(text=text, vectorstore=vectorstore)
    else:
        return {
            "output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT."
        }


@app.post("/answerQuery")
async def answerQuestion(query: str, vectorstore: str, llmModel: str = "llama3-70b-8192"):
    return answerQuery(query=query, vectorstore=vectorstore, llmModel=llmModel)


@app.post("/deleteChatbot")
async def delete(chatbotName: str):
    username, chatbotName = chatbotName.split("-")[1], chatbotName.split("-")[2]
    client.table('ConversAI_ChatbotInfo').delete().eq('username', username).eq('chatbotname', chatbotName).execute()
    return deleteTable(tableName=chatbotName)


@app.post("/listChatbots")
async def delete(username: str):
    return listTables(username=username)


@app.post("/getLinks")
async def crawlUrl(baseUrl: str):
    return {
        "urls": getLinks(url=baseUrl, timeout=30)
    }


@app.post("/getCurrentCount")
async def getCount(vectorstore: str):
    username, chatbotName = vectorstore.split("-")[1], vectorstore.split("-")[2]
    df = pd.DataFrame(client.table("ConversAI_ChatbotInfo").select("*").execute().data)
    return {
        "currentCount": df[(df['username'] == username) & (df['chatbotname'] == chatbotName)]['charactercount'].iloc[0]
    }


@app.post("/getYoutubeTranscript")
async def getYTTranscript(urls: str):
    return getTranscript(urls=urls)


@app.post("/analyzeData")
async def analyzeAndAnswer(query: str, file: UploadFile = File(...)):
    extension = file.filename.split(".")[-1]
    try:
        if extension in ["xls", "xlsx", "xlsm", "xlsb"]:
            df = pd.read_excel(io.BytesIO(await file.read()))
            response = analyzeData(query=query, dataframe=df)
        elif extension == "csv":
            df = pd.read_csv(io.BytesIO(await file.read()))
            response = analyzeData(query=query, dataframe=df)
        else:
            response = "INVALID FILE TYPE"
        return {
            "output": response
        }
    except:
        return {
            "output": "UNABLE TO ANSWER QUERY"
        }