Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from typing import Tuple, List | |
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH | |
from detector import SignatureDetector, download_model | |
def create_gradio_interface(): | |
# Download model if it doesn't exist | |
if not os.path.exists(MODEL_PATH): | |
download_model() | |
# Initialize the detector | |
detector = SignatureDetector(MODEL_PATH) | |
css = """ | |
.custom-button { | |
background-color: #b0ffb8 !important; | |
color: black !important; | |
} | |
.custom-button:hover { | |
background-color: #b0ffb8b3 !important; | |
} | |
.container { | |
max-width: 1200px !important; | |
margin: auto !important; | |
} | |
.main-container { | |
gap: 20px !important; | |
} | |
.metrics-container { | |
padding: 1.5rem !important; | |
border-radius: 0.75rem !important; | |
background-color: #1f2937 !important; | |
margin: 1rem 0 !important; | |
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important; | |
} | |
.metrics-title { | |
font-size: 1.25rem !important; | |
font-weight: 600 !important; | |
color: #1f2937 !important; | |
margin-bottom: 1rem !important; | |
} | |
.metrics-row { | |
display: flex !important; | |
gap: 1rem !important; | |
margin-top: 0.5rem !important; | |
} | |
""" | |
def process_image(image: Image.Image, conf_thres: float, iou_thres: float) -> Tuple[Image.Image, str, plt.Figure, plt.Figure, str, str]: | |
if image is None: | |
return None, None, None, None, None, None | |
output_image, metrics = detector.detect(image, conf_thres, iou_thres) | |
# Create plots data | |
hist_data = pd.DataFrame({"Time (ms)": metrics["times"]}) | |
indices = range( | |
metrics["start_index"], metrics["start_index"] + len(metrics["times"]) | |
) | |
line_data = pd.DataFrame( | |
{ | |
"Inference": indices, | |
"Time (ms)": metrics["times"], | |
"Mean": [metrics["avg_time"]] * len(metrics["times"]), | |
} | |
) | |
hist_fig, line_fig = detector.create_plots(hist_data, line_data) | |
return ( | |
output_image, | |
gr.update( | |
value=f"{metrics['total_inferences']}", | |
container=True, | |
), | |
hist_fig, | |
line_fig, | |
f"{metrics['avg_time']:.2f}", | |
f"{metrics['times'][-1]:.2f}", | |
) | |
def process_folder(files_paths: List[str], conf_thres: float, iou_thres: float): | |
if not files_paths: | |
return None, None, None, None, None, None | |
valid_extensions = [".jpg", ".jpeg", ".png"] | |
image_files = [ | |
f for f in files_paths if os.path.splitext(f.lower())[1] in valid_extensions | |
] | |
if not image_files: | |
return None, None, None, None, None, None | |
for img_file in image_files: | |
image = Image.open(img_file) | |
yield process_image(image, conf_thres, iou_thres) | |
with gr.Blocks( | |
theme=gr.themes.Soft( | |
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray" | |
), | |
css=css, | |
) as iface: | |
gr.HTML( | |
""" | |
<h1>Tech4Humans - Signature Detector</h1> | |
<div style="display: flex; align-items: center; gap: 10px;"> | |
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="Model on HF"> | |
</a> | |
<a href="https://huggingface.co/datasets/tech4humans/signature-detection"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF"> | |
</a> | |
<a href="https://github.com/tech4ai/t4ai-signature-detect-server"> | |
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub"> | |
</a> | |
</div> | |
""" | |
) | |
gr.Markdown( | |
""" | |
This system uses the [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector) model, specially fine-tuned for detecting handwritten signatures in document images. | |
With this detector, it is possible to identify signatures in digital documents with high accuracy in real time, making it ideal for applications involving validation, organization, and document processing. | |
--- | |
""" | |
) | |
with gr.Row(equal_height=True, elem_classes="main-container"): | |
# Left column for controls and information | |
with gr.Column(scale=1): | |
with gr.Tab("Single Image"): | |
input_image = gr.Image(label="Upload your document", type="pil") | |
with gr.Row(): | |
clear_single_btn = gr.ClearButton([input_image], value="Clear") | |
detect_single_btn = gr.Button( | |
"Detect", elem_classes="custom-button" | |
) | |
with gr.Tab("Image Folder"): | |
input_folder = gr.File( | |
label="Upload a folder with images", | |
file_count="directory", | |
type="filepath", | |
) | |
with gr.Row(): | |
clear_folder_btn = gr.ClearButton([input_folder], value="Clear") | |
detect_folder_btn = gr.Button( | |
"Detect", elem_classes="custom-button" | |
) | |
with gr.Group(): | |
confidence_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.05, | |
label="Confidence Threshold", | |
info="Adjust the minimum confidence score required for detection.", | |
) | |
iou_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
label="IoU Threshold", | |
info="Adjust the Intersection over Union threshold for Non-Maximum Suppression (NMS).", | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Detection Results") | |
with gr.Accordion("Examples", open=True): | |
gr.Examples( | |
label="Image Examples", | |
examples=[ | |
["assets/images/example_{i}.jpg".format(i=i)] | |
for i in range( | |
0, len(os.listdir(os.path.join("assets", "images"))) | |
) | |
], | |
inputs=input_image, | |
outputs=output_image, | |
fn=detector.detect_example, | |
cache_examples=True, | |
cache_mode="lazy", | |
) | |
with gr.Row(elem_classes="metrics-container"): | |
with gr.Column(scale=1): | |
total_inferences = gr.Textbox( | |
label="Total Inferences", show_copy_button=True, container=True | |
) | |
hist_plot = gr.Plot(label="Time Distribution", container=True) | |
with gr.Column(scale=1): | |
line_plot = gr.Plot(label="Time History", container=True) | |
with gr.Row(elem_classes="metrics-row"): | |
avg_inference_time = gr.Textbox( | |
label="Average Inference Time (ms)", | |
show_copy_button=True, | |
container=True, | |
) | |
last_inference_time = gr.Textbox( | |
label="Last Inference Time (ms)", | |
show_copy_button=True, | |
container=True, | |
) | |
with gr.Row(elem_classes="container"): | |
gr.Markdown( | |
""" | |
--- | |
## About the Project | |
This project uses the YOLOv8s model fine-tuned for detecting handwritten signatures in document images. It was trained with data from the [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) datasets, undergoing preprocessing and data augmentation processes. | |
### Key Metrics: | |
- **Precision:** 94.74% | |
- **Recall:** 89.72% | |
- **mAP@50:** 94.50% | |
- **mAP@50-95:** 67.35% | |
- **Inference Time (CPU):** 171.56 ms | |
Complete details on the training process, hyperparameter tuning, model evaluation, dataset creation, and inference server can be found in the links below. | |
--- | |
**Developed by [Tech4Humans](https://www.tech4h.com.br/)** | **Model:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Dataset:** [Tobacco800 + signatures-xc8up](https://huggingface.co/datasets/tech4humans/signature-detection) | |
""" | |
) | |
clear_single_btn.add([output_image]) | |
clear_folder_btn.add([output_image]) | |
detect_single_btn.click( | |
fn=process_image, | |
inputs=[input_image, confidence_threshold, iou_threshold], | |
outputs=[ | |
output_image, | |
total_inferences, | |
hist_plot, | |
line_plot, | |
avg_inference_time, | |
last_inference_time, | |
], | |
) | |
detect_folder_btn.click( | |
fn=process_folder, | |
inputs=[input_folder, confidence_threshold, iou_threshold], | |
outputs=[ | |
output_image, | |
total_inferences, | |
hist_plot, | |
line_plot, | |
avg_inference_time, | |
last_inference_time, | |
], | |
) | |
# Carregar métricas iniciais ao carregar a página | |
iface.load( | |
fn=detector.load_initial_metrics, | |
inputs=None, | |
outputs=[ | |
output_image, | |
total_inferences, | |
hist_plot, | |
line_plot, | |
avg_inference_time, | |
last_inference_time, | |
], | |
) | |
return iface | |
if __name__ == "__main__": | |
if not os.path.exists(DATABASE_PATH): | |
os.makedirs(DATABASE_DIR, exist_ok=True) | |
iface = create_gradio_interface() | |
iface.launch() | |