from fastai.vision.all import * import gradio as gr import pathlib, os categories = ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip'] def classify_image(img): learn = load_learner('flowers.pkl') pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = [ 'dandelion+seeds.jpg', 'common-dandelion-seeds-medical-herb-taraxacum-officinale.jpg', 'dandelion-seedhead.jpg', 'how-to-draw-sunflower.jpg', 'sunflower.jpg', 'sunflower1.jpg', 'tulip-drawing.jpg', 'broken-tulip-flower.jpg', 'rose01.jpg', 'rose02-blue.jpg' ] iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) iface.launch()