aps commited on
Commit
4848335
·
1 Parent(s): 9463f01

Commit efficientat

Browse files
.gitattributes CHANGED
@@ -31,4 +31,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
31
  *.xz filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
 
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
31
  *.xz filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *.wav filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ efficientat/resources/metro_station-paris.wav filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
app.py CHANGED
@@ -1,4 +1,53 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  def formatted_message(audio_length, audio_class, userText):
4
  prefix = '''You are going to act as a magical tool that allows for humans to communicate with non-human entities like
@@ -33,7 +82,7 @@ def call_api(message):
33
 
34
 
35
  demo = gr.Interface(
36
- call_api,
37
- gr.Audio(source="microphone"),
38
- gr.Audio(),
39
  ).launch(debug=True)
 
1
  import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import librosa
5
+
6
+ from efficientat.models.MobileNetV3 import get_model as get_mobilenet, get_ensemble_model
7
+ from efficientat.models.preprocess import AugmentMelSTFT
8
+ from efficientat.helpers.utils import NAME_TO_WIDTH, labels
9
+
10
+ from torch import autocast
11
+ from contextlib import nullcontext
12
+
13
+ MODEL_NAME = "mn40_as"
14
+
15
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
16
+ model = get_mobilenet(width_mult=NAME_TO_WIDTH(MODEL_NAME), pretrained_name=MODEL_NAME)
17
+ model.to(device)
18
+ model.eval()
19
+
20
+
21
+ def audio_tag(
22
+ audio_path,
23
+ sample_rate=32000,
24
+ window_size=800,
25
+ hop_size=320,
26
+ n_mels=128,
27
+ cuda=True,
28
+ ):
29
+
30
+ (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True)
31
+ mel = AugmentMelSTFT(n_mels=n_mels, sr=sample_rate, win_length=window_size, hopsize=hop_size)
32
+ mel.to(device)
33
+ mel.eval()
34
+ waveform = torch.from_numpy(waveform[None, :]).to(device)
35
+
36
+ # our models are trained in half precision mode (torch.float16)
37
+ # run on cuda with torch.float16 to get the best performance
38
+ # running on cpu with torch.float32 gives similar performance, using torch.bfloat16 is worse
39
+ with torch.no_grad(), autocast(device_type=device.type) if cuda and torch.cuda.is_available() else nullcontext():
40
+ spec = mel(waveform)
41
+ preds, features = model(spec.unsqueeze(0))
42
+ preds = torch.sigmoid(preds.float()).squeeze().cpu().numpy()
43
+
44
+ sorted_indexes = np.argsort(preds)[::-1]
45
+ output = {}
46
+ # Print audio tagging top probabilities
47
+ for k in range(10):
48
+ output[sorted_indexes[k]] = labels[sorted_indexes[k]]
49
+
50
+ return "\n".join(output.values())
51
 
52
  def formatted_message(audio_length, audio_class, userText):
53
  prefix = '''You are going to act as a magical tool that allows for humans to communicate with non-human entities like
 
82
 
83
 
84
  demo = gr.Interface(
85
+ audio_tag,
86
+ gr.Audio(source="upload", type="filepath", label="Your audio"),
87
+ gr.Textbox(),
88
  ).launch(debug=True)
efficientat/helpers/flop_count.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+
5
+ # adapted from PANNs (https://github.com/qiuqiangkong/audioset_tagging_cnn)
6
+
7
+ def count_macs(model, spec_size):
8
+ list_conv2d = []
9
+
10
+ def conv2d_hook(self, input, output):
11
+ batch_size, input_channels, input_height, input_width = input[0].size()
12
+ assert batch_size == 1
13
+ output_channels, output_height, output_width = output[0].size()
14
+
15
+ kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups)
16
+ bias_ops = 1 if self.bias is not None else 0
17
+
18
+ params = output_channels * (kernel_ops + bias_ops)
19
+ # overall macs count is:
20
+ # kernel**2 * in_channels/groups * out_channels * out_width * out_height
21
+ macs = batch_size * params * output_height * output_width
22
+
23
+ list_conv2d.append(macs)
24
+
25
+ list_linear = []
26
+
27
+ def linear_hook(self, input, output):
28
+ batch_size = input[0].size(0) if input[0].dim() == 2 else 1
29
+ assert batch_size == 1
30
+ weight_ops = self.weight.nelement()
31
+ bias_ops = self.bias.nelement()
32
+
33
+ # overall macs count is equal to the number of parameters in layer
34
+ macs = batch_size * (weight_ops + bias_ops)
35
+ list_linear.append(macs)
36
+
37
+ def foo(net):
38
+ if net.__class__.__name__ == 'Conv2dStaticSamePadding':
39
+ net.register_forward_hook(conv2d_hook)
40
+ childrens = list(net.children())
41
+ if not childrens:
42
+ if isinstance(net, nn.Conv2d):
43
+ net.register_forward_hook(conv2d_hook)
44
+ elif isinstance(net, nn.Linear):
45
+ net.register_forward_hook(linear_hook)
46
+ else:
47
+ print('Warning: flop of module {} is not counted!'.format(net))
48
+ return
49
+ for c in childrens:
50
+ foo(c)
51
+
52
+ # Register hook
53
+ foo(model)
54
+
55
+ device = next(model.parameters()).device
56
+ input = torch.rand(spec_size).to(device)
57
+ with torch.no_grad():
58
+ model(input)
59
+
60
+ total_macs = sum(list_conv2d) + sum(list_linear)
61
+
62
+ print("*************Computational Complexity (multiply-adds) **************")
63
+ print("Number of Convolutional Layers: ", len(list_conv2d))
64
+ print("Number of Linear Layers: ", len(list_linear))
65
+ print("Relative Share of Convolutional Layers: {:.2f}".format((sum(list_conv2d) / total_macs)))
66
+ print("Relative Share of Linear Layers: {:.2f}".format(sum(list_linear) / total_macs))
67
+ print("Total MACs (multiply-accumulate operations in Billions): {:.2f}".format(total_macs/10**9))
68
+ print("********************************************************************")
69
+ return total_macs
70
+
71
+
72
+ def count_macs_transformer(model, spec_size):
73
+ """Count macs. Code modified from others' implementation.
74
+ """
75
+ list_conv2d = []
76
+
77
+ def conv2d_hook(self, input, output):
78
+ batch_size, input_channels, input_height, input_width = input[0].size()
79
+ assert batch_size == 1
80
+ output_channels, output_height, output_width = output[0].size()
81
+
82
+ kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups)
83
+ bias_ops = 1 if self.bias is not None else 0
84
+
85
+ params = output_channels * (kernel_ops + bias_ops)
86
+ # overall macs count is:
87
+ # kernel**2 * in_channels/groups * out_channels * out_width * out_height
88
+ macs = batch_size * params * output_height * output_width
89
+
90
+ list_conv2d.append(macs)
91
+
92
+ list_linear = []
93
+
94
+ def linear_hook(self, input, output):
95
+ batch_size = input[0].size(0) if input[0].dim() >= 2 else 1
96
+ assert batch_size == 1
97
+ if input[0].dim() == 3:
98
+ # (batch size, sequence length, embeddings size)
99
+ batch_size, seq_len, embed_size = input[0].size()
100
+
101
+ weight_ops = self.weight.nelement()
102
+ bias_ops = self.bias.nelement() if self.bias is not None else 0
103
+ # linear layer applied position-wise, multiply with sequence length
104
+ macs = batch_size * (weight_ops + bias_ops) * seq_len
105
+ else:
106
+ # classification head
107
+ # (batch size, embeddings size)
108
+ batch_size, embed_size = input[0].size()
109
+ weight_ops = self.weight.nelement()
110
+ bias_ops = self.bias.nelement() if self.bias is not None else 0
111
+ # overall macs count is equal to the number of parameters in layer
112
+ macs = batch_size * (weight_ops + bias_ops)
113
+ list_linear.append(macs)
114
+
115
+ list_att = []
116
+
117
+ def attention_hook(self, input, output):
118
+ # here we only calculate the attention macs; linear layers are processed in linear_hook
119
+ batch_size, seq_len, embed_size = input[0].size()
120
+
121
+ # 2 times embed_size * seq_len**2
122
+ # - computing the attention matrix: embed_size * seq_len**2
123
+ # - multiply attention matrix with value matrix: embed_size * seq_len**2
124
+ macs = batch_size * embed_size * seq_len * seq_len * 2
125
+ list_att.append(macs)
126
+
127
+ def foo(net):
128
+ childrens = list(net.children())
129
+ if net.__class__.__name__ == "MultiHeadAttention":
130
+ net.register_forward_hook(attention_hook)
131
+ if not childrens:
132
+ if isinstance(net, nn.Conv2d):
133
+ net.register_forward_hook(conv2d_hook)
134
+ elif isinstance(net, nn.Linear):
135
+ net.register_forward_hook(linear_hook)
136
+ else:
137
+ print('Warning: flop of module {} is not counted!'.format(net))
138
+ return
139
+ for c in childrens:
140
+ foo(c)
141
+
142
+ # Register hook
143
+ foo(model)
144
+
145
+ device = next(model.parameters()).device
146
+ input = torch.rand(spec_size).to(device)
147
+
148
+ with torch.no_grad():
149
+ model(input)
150
+
151
+ total_macs = sum(list_conv2d) + sum(list_linear) + sum(list_att)
152
+
153
+ print("*************Computational Complexity (multiply-adds) **************")
154
+ print("Number of Convolutional Layers: ", len(list_conv2d))
155
+ print("Number of Linear Layers: ", len(list_linear))
156
+ print("Number of Attention Layers: ", len(list_att))
157
+ print("Relative Share of Convolutional Layers: {:.2f}".format((sum(list_conv2d) / total_macs)))
158
+ print("Relative Share of Linear Layers: {:.2f}".format(sum(list_linear) / total_macs))
159
+ print("Relative Share of Attention Layers: {:.2f}".format(sum(list_att) / total_macs))
160
+ print("Total MACs (multiply-accumulate operations in Billions): {:.2f}".format(total_macs/10**9))
161
+ print("********************************************************************")
162
+ return total_macs
efficientat/helpers/init.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import random
4
+
5
+
6
+ def worker_init_fn(wid):
7
+ seed_sequence = np.random.SeedSequence(
8
+ [torch.initial_seed(), wid]
9
+ )
10
+
11
+ to_seed = spawn_get(seed_sequence, 2, dtype=int)
12
+ torch.random.manual_seed(to_seed)
13
+
14
+ np_seed = spawn_get(seed_sequence, 2, dtype=np.ndarray)
15
+ np.random.seed(np_seed)
16
+
17
+ py_seed = spawn_get(seed_sequence, 2, dtype=int)
18
+ random.seed(py_seed)
19
+
20
+
21
+ def spawn_get(seedseq, n_entropy, dtype):
22
+ child = seedseq.spawn(1)[0]
23
+ state = child.generate_state(n_entropy, dtype=np.uint32)
24
+
25
+ if dtype == np.ndarray:
26
+ return state
27
+ elif dtype == int:
28
+ state_as_int = 0
29
+ for shift, s in enumerate(state):
30
+ state_as_int = state_as_int + int((2 ** (32 * shift) * s))
31
+ return state_as_int
32
+ else:
33
+ raise ValueError(f'not a valid dtype "{dtype}"')
efficientat/helpers/utils.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def NAME_TO_WIDTH(name):
2
+ map = {
3
+ 'mn04': 0.4,
4
+ 'mn05': 0.5,
5
+ 'mn10': 1.0,
6
+ 'mn20': 2.0,
7
+ 'mn30': 3.0,
8
+ 'mn40': 4.0
9
+ }
10
+ try:
11
+ w = map[name[:4]]
12
+ except:
13
+ w = 1.0
14
+
15
+ return w
16
+
17
+
18
+ import csv
19
+
20
+ # Load label
21
+ with open('efficientat/metadata/class_labels_indices.csv', 'r') as f:
22
+ reader = csv.reader(f, delimiter=',')
23
+ lines = list(reader)
24
+
25
+ labels = []
26
+ ids = [] # Each label has a unique id such as "/m/068hy"
27
+ for i1 in range(1, len(lines)):
28
+ id = lines[i1][1]
29
+ label = lines[i1][2]
30
+ ids.append(id)
31
+ labels.append(label)
32
+
33
+ classes_num = len(labels)
34
+
35
+
36
+ import numpy as np
37
+
38
+
39
+ def exp_warmup_linear_down(warmup, rampdown_length, start_rampdown, last_value):
40
+ rampup = exp_rampup(warmup)
41
+ rampdown = linear_rampdown(rampdown_length, start_rampdown, last_value)
42
+ def wrapper(epoch):
43
+ return rampup(epoch) * rampdown(epoch)
44
+ return wrapper
45
+
46
+
47
+ def exp_rampup(rampup_length):
48
+ """Exponential rampup from https://arxiv.org/abs/1610.02242"""
49
+ def wrapper(epoch):
50
+ if epoch < rampup_length:
51
+ epoch = np.clip(epoch, 0.5, rampup_length)
52
+ phase = 1.0 - epoch / rampup_length
53
+ return float(np.exp(-5.0 * phase * phase))
54
+ else:
55
+ return 1.0
56
+ return wrapper
57
+
58
+
59
+ def linear_rampdown(rampdown_length, start=0, last_value=0):
60
+ def wrapper(epoch):
61
+ if epoch <= start:
62
+ return 1.
63
+ elif epoch - start < rampdown_length:
64
+ return last_value + (1. - last_value) * (rampdown_length - epoch + start) / rampdown_length
65
+ else:
66
+ return last_value
67
+ return wrapper
68
+
69
+
70
+ import torch
71
+
72
+
73
+ def mixup(size, alpha):
74
+ rn_indices = torch.randperm(size)
75
+ lambd = np.random.beta(alpha, alpha, size).astype(np.float32)
76
+ lambd = np.concatenate([lambd[:, None], 1 - lambd[:, None]], 1).max(1)
77
+ lam = torch.FloatTensor(lambd)
78
+ return rn_indices, lam
79
+
80
+
81
+ from torch.distributions.beta import Beta
82
+
83
+
84
+ def mixstyle(x, p=0.4, alpha=0.4, eps=1e-6, mix_labels=False):
85
+ if np.random.rand() > p:
86
+ return x
87
+ batch_size = x.size(0)
88
+
89
+ # changed from dim=[2,3] to dim=[1,3] - from channel-wise statistics to frequency-wise statistics
90
+ f_mu = x.mean(dim=[1, 3], keepdim=True)
91
+ f_var = x.var(dim=[1, 3], keepdim=True)
92
+
93
+ f_sig = (f_var + eps).sqrt() # compute instance standard deviation
94
+ f_mu, f_sig = f_mu.detach(), f_sig.detach() # block gradients
95
+ x_normed = (x - f_mu) / f_sig # normalize input
96
+ lmda = Beta(alpha, alpha).sample((batch_size, 1, 1, 1)).to(x.device) # sample instance-wise convex weights
97
+ perm = torch.randperm(batch_size).to(x.device) # generate shuffling indices
98
+ f_mu_perm, f_sig_perm = f_mu[perm], f_sig[perm] # shuffling
99
+ mu_mix = f_mu * lmda + f_mu_perm * (1 - lmda) # generate mixed mean
100
+ sig_mix = f_sig * lmda + f_sig_perm * (1 - lmda) # generate mixed standard deviation
101
+ x = x_normed * sig_mix + mu_mix # denormalize input using the mixed statistics
102
+ if mix_labels:
103
+ return x, perm, lmda
104
+ return x
efficientat/metadata/class_labels_indices.csv ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ index,mid,display_name
2
+ 0,/m/09x0r,"Speech"
3
+ 1,/m/05zppz,"Male speech, man speaking"
4
+ 2,/m/02zsn,"Female speech, woman speaking"
5
+ 3,/m/0ytgt,"Child speech, kid speaking"
6
+ 4,/m/01h8n0,"Conversation"
7
+ 5,/m/02qldy,"Narration, monologue"
8
+ 6,/m/0261r1,"Babbling"
9
+ 7,/m/0brhx,"Speech synthesizer"
10
+ 8,/m/07p6fty,"Shout"
11
+ 9,/m/07q4ntr,"Bellow"
12
+ 10,/m/07rwj3x,"Whoop"
13
+ 11,/m/07sr1lc,"Yell"
14
+ 12,/m/04gy_2,"Battle cry"
15
+ 13,/t/dd00135,"Children shouting"
16
+ 14,/m/03qc9zr,"Screaming"
17
+ 15,/m/02rtxlg,"Whispering"
18
+ 16,/m/01j3sz,"Laughter"
19
+ 17,/t/dd00001,"Baby laughter"
20
+ 18,/m/07r660_,"Giggle"
21
+ 19,/m/07s04w4,"Snicker"
22
+ 20,/m/07sq110,"Belly laugh"
23
+ 21,/m/07rgt08,"Chuckle, chortle"
24
+ 22,/m/0463cq4,"Crying, sobbing"
25
+ 23,/t/dd00002,"Baby cry, infant cry"
26
+ 24,/m/07qz6j3,"Whimper"
27
+ 25,/m/07qw_06,"Wail, moan"
28
+ 26,/m/07plz5l,"Sigh"
29
+ 27,/m/015lz1,"Singing"
30
+ 28,/m/0l14jd,"Choir"
31
+ 29,/m/01swy6,"Yodeling"
32
+ 30,/m/02bk07,"Chant"
33
+ 31,/m/01c194,"Mantra"
34
+ 32,/t/dd00003,"Male singing"
35
+ 33,/t/dd00004,"Female singing"
36
+ 34,/t/dd00005,"Child singing"
37
+ 35,/t/dd00006,"Synthetic singing"
38
+ 36,/m/06bxc,"Rapping"
39
+ 37,/m/02fxyj,"Humming"
40
+ 38,/m/07s2xch,"Groan"
41
+ 39,/m/07r4k75,"Grunt"
42
+ 40,/m/01w250,"Whistling"
43
+ 41,/m/0lyf6,"Breathing"
44
+ 42,/m/07mzm6,"Wheeze"
45
+ 43,/m/01d3sd,"Snoring"
46
+ 44,/m/07s0dtb,"Gasp"
47
+ 45,/m/07pyy8b,"Pant"
48
+ 46,/m/07q0yl5,"Snort"
49
+ 47,/m/01b_21,"Cough"
50
+ 48,/m/0dl9sf8,"Throat clearing"
51
+ 49,/m/01hsr_,"Sneeze"
52
+ 50,/m/07ppn3j,"Sniff"
53
+ 51,/m/06h7j,"Run"
54
+ 52,/m/07qv_x_,"Shuffle"
55
+ 53,/m/07pbtc8,"Walk, footsteps"
56
+ 54,/m/03cczk,"Chewing, mastication"
57
+ 55,/m/07pdhp0,"Biting"
58
+ 56,/m/0939n_,"Gargling"
59
+ 57,/m/01g90h,"Stomach rumble"
60
+ 58,/m/03q5_w,"Burping, eructation"
61
+ 59,/m/02p3nc,"Hiccup"
62
+ 60,/m/02_nn,"Fart"
63
+ 61,/m/0k65p,"Hands"
64
+ 62,/m/025_jnm,"Finger snapping"
65
+ 63,/m/0l15bq,"Clapping"
66
+ 64,/m/01jg02,"Heart sounds, heartbeat"
67
+ 65,/m/01jg1z,"Heart murmur"
68
+ 66,/m/053hz1,"Cheering"
69
+ 67,/m/028ght,"Applause"
70
+ 68,/m/07rkbfh,"Chatter"
71
+ 69,/m/03qtwd,"Crowd"
72
+ 70,/m/07qfr4h,"Hubbub, speech noise, speech babble"
73
+ 71,/t/dd00013,"Children playing"
74
+ 72,/m/0jbk,"Animal"
75
+ 73,/m/068hy,"Domestic animals, pets"
76
+ 74,/m/0bt9lr,"Dog"
77
+ 75,/m/05tny_,"Bark"
78
+ 76,/m/07r_k2n,"Yip"
79
+ 77,/m/07qf0zm,"Howl"
80
+ 78,/m/07rc7d9,"Bow-wow"
81
+ 79,/m/0ghcn6,"Growling"
82
+ 80,/t/dd00136,"Whimper (dog)"
83
+ 81,/m/01yrx,"Cat"
84
+ 82,/m/02yds9,"Purr"
85
+ 83,/m/07qrkrw,"Meow"
86
+ 84,/m/07rjwbb,"Hiss"
87
+ 85,/m/07r81j2,"Caterwaul"
88
+ 86,/m/0ch8v,"Livestock, farm animals, working animals"
89
+ 87,/m/03k3r,"Horse"
90
+ 88,/m/07rv9rh,"Clip-clop"
91
+ 89,/m/07q5rw0,"Neigh, whinny"
92
+ 90,/m/01xq0k1,"Cattle, bovinae"
93
+ 91,/m/07rpkh9,"Moo"
94
+ 92,/m/0239kh,"Cowbell"
95
+ 93,/m/068zj,"Pig"
96
+ 94,/t/dd00018,"Oink"
97
+ 95,/m/03fwl,"Goat"
98
+ 96,/m/07q0h5t,"Bleat"
99
+ 97,/m/07bgp,"Sheep"
100
+ 98,/m/025rv6n,"Fowl"
101
+ 99,/m/09b5t,"Chicken, rooster"
102
+ 100,/m/07st89h,"Cluck"
103
+ 101,/m/07qn5dc,"Crowing, cock-a-doodle-doo"
104
+ 102,/m/01rd7k,"Turkey"
105
+ 103,/m/07svc2k,"Gobble"
106
+ 104,/m/09ddx,"Duck"
107
+ 105,/m/07qdb04,"Quack"
108
+ 106,/m/0dbvp,"Goose"
109
+ 107,/m/07qwf61,"Honk"
110
+ 108,/m/01280g,"Wild animals"
111
+ 109,/m/0cdnk,"Roaring cats (lions, tigers)"
112
+ 110,/m/04cvmfc,"Roar"
113
+ 111,/m/015p6,"Bird"
114
+ 112,/m/020bb7,"Bird vocalization, bird call, bird song"
115
+ 113,/m/07pggtn,"Chirp, tweet"
116
+ 114,/m/07sx8x_,"Squawk"
117
+ 115,/m/0h0rv,"Pigeon, dove"
118
+ 116,/m/07r_25d,"Coo"
119
+ 117,/m/04s8yn,"Crow"
120
+ 118,/m/07r5c2p,"Caw"
121
+ 119,/m/09d5_,"Owl"
122
+ 120,/m/07r_80w,"Hoot"
123
+ 121,/m/05_wcq,"Bird flight, flapping wings"
124
+ 122,/m/01z5f,"Canidae, dogs, wolves"
125
+ 123,/m/06hps,"Rodents, rats, mice"
126
+ 124,/m/04rmv,"Mouse"
127
+ 125,/m/07r4gkf,"Patter"
128
+ 126,/m/03vt0,"Insect"
129
+ 127,/m/09xqv,"Cricket"
130
+ 128,/m/09f96,"Mosquito"
131
+ 129,/m/0h2mp,"Fly, housefly"
132
+ 130,/m/07pjwq1,"Buzz"
133
+ 131,/m/01h3n,"Bee, wasp, etc."
134
+ 132,/m/09ld4,"Frog"
135
+ 133,/m/07st88b,"Croak"
136
+ 134,/m/078jl,"Snake"
137
+ 135,/m/07qn4z3,"Rattle"
138
+ 136,/m/032n05,"Whale vocalization"
139
+ 137,/m/04rlf,"Music"
140
+ 138,/m/04szw,"Musical instrument"
141
+ 139,/m/0fx80y,"Plucked string instrument"
142
+ 140,/m/0342h,"Guitar"
143
+ 141,/m/02sgy,"Electric guitar"
144
+ 142,/m/018vs,"Bass guitar"
145
+ 143,/m/042v_gx,"Acoustic guitar"
146
+ 144,/m/06w87,"Steel guitar, slide guitar"
147
+ 145,/m/01glhc,"Tapping (guitar technique)"
148
+ 146,/m/07s0s5r,"Strum"
149
+ 147,/m/018j2,"Banjo"
150
+ 148,/m/0jtg0,"Sitar"
151
+ 149,/m/04rzd,"Mandolin"
152
+ 150,/m/01bns_,"Zither"
153
+ 151,/m/07xzm,"Ukulele"
154
+ 152,/m/05148p4,"Keyboard (musical)"
155
+ 153,/m/05r5c,"Piano"
156
+ 154,/m/01s0ps,"Electric piano"
157
+ 155,/m/013y1f,"Organ"
158
+ 156,/m/03xq_f,"Electronic organ"
159
+ 157,/m/03gvt,"Hammond organ"
160
+ 158,/m/0l14qv,"Synthesizer"
161
+ 159,/m/01v1d8,"Sampler"
162
+ 160,/m/03q5t,"Harpsichord"
163
+ 161,/m/0l14md,"Percussion"
164
+ 162,/m/02hnl,"Drum kit"
165
+ 163,/m/0cfdd,"Drum machine"
166
+ 164,/m/026t6,"Drum"
167
+ 165,/m/06rvn,"Snare drum"
168
+ 166,/m/03t3fj,"Rimshot"
169
+ 167,/m/02k_mr,"Drum roll"
170
+ 168,/m/0bm02,"Bass drum"
171
+ 169,/m/011k_j,"Timpani"
172
+ 170,/m/01p970,"Tabla"
173
+ 171,/m/01qbl,"Cymbal"
174
+ 172,/m/03qtq,"Hi-hat"
175
+ 173,/m/01sm1g,"Wood block"
176
+ 174,/m/07brj,"Tambourine"
177
+ 175,/m/05r5wn,"Rattle (instrument)"
178
+ 176,/m/0xzly,"Maraca"
179
+ 177,/m/0mbct,"Gong"
180
+ 178,/m/016622,"Tubular bells"
181
+ 179,/m/0j45pbj,"Mallet percussion"
182
+ 180,/m/0dwsp,"Marimba, xylophone"
183
+ 181,/m/0dwtp,"Glockenspiel"
184
+ 182,/m/0dwt5,"Vibraphone"
185
+ 183,/m/0l156b,"Steelpan"
186
+ 184,/m/05pd6,"Orchestra"
187
+ 185,/m/01kcd,"Brass instrument"
188
+ 186,/m/0319l,"French horn"
189
+ 187,/m/07gql,"Trumpet"
190
+ 188,/m/07c6l,"Trombone"
191
+ 189,/m/0l14_3,"Bowed string instrument"
192
+ 190,/m/02qmj0d,"String section"
193
+ 191,/m/07y_7,"Violin, fiddle"
194
+ 192,/m/0d8_n,"Pizzicato"
195
+ 193,/m/01xqw,"Cello"
196
+ 194,/m/02fsn,"Double bass"
197
+ 195,/m/085jw,"Wind instrument, woodwind instrument"
198
+ 196,/m/0l14j_,"Flute"
199
+ 197,/m/06ncr,"Saxophone"
200
+ 198,/m/01wy6,"Clarinet"
201
+ 199,/m/03m5k,"Harp"
202
+ 200,/m/0395lw,"Bell"
203
+ 201,/m/03w41f,"Church bell"
204
+ 202,/m/027m70_,"Jingle bell"
205
+ 203,/m/0gy1t2s,"Bicycle bell"
206
+ 204,/m/07n_g,"Tuning fork"
207
+ 205,/m/0f8s22,"Chime"
208
+ 206,/m/026fgl,"Wind chime"
209
+ 207,/m/0150b9,"Change ringing (campanology)"
210
+ 208,/m/03qjg,"Harmonica"
211
+ 209,/m/0mkg,"Accordion"
212
+ 210,/m/0192l,"Bagpipes"
213
+ 211,/m/02bxd,"Didgeridoo"
214
+ 212,/m/0l14l2,"Shofar"
215
+ 213,/m/07kc_,"Theremin"
216
+ 214,/m/0l14t7,"Singing bowl"
217
+ 215,/m/01hgjl,"Scratching (performance technique)"
218
+ 216,/m/064t9,"Pop music"
219
+ 217,/m/0glt670,"Hip hop music"
220
+ 218,/m/02cz_7,"Beatboxing"
221
+ 219,/m/06by7,"Rock music"
222
+ 220,/m/03lty,"Heavy metal"
223
+ 221,/m/05r6t,"Punk rock"
224
+ 222,/m/0dls3,"Grunge"
225
+ 223,/m/0dl5d,"Progressive rock"
226
+ 224,/m/07sbbz2,"Rock and roll"
227
+ 225,/m/05w3f,"Psychedelic rock"
228
+ 226,/m/06j6l,"Rhythm and blues"
229
+ 227,/m/0gywn,"Soul music"
230
+ 228,/m/06cqb,"Reggae"
231
+ 229,/m/01lyv,"Country"
232
+ 230,/m/015y_n,"Swing music"
233
+ 231,/m/0gg8l,"Bluegrass"
234
+ 232,/m/02x8m,"Funk"
235
+ 233,/m/02w4v,"Folk music"
236
+ 234,/m/06j64v,"Middle Eastern music"
237
+ 235,/m/03_d0,"Jazz"
238
+ 236,/m/026z9,"Disco"
239
+ 237,/m/0ggq0m,"Classical music"
240
+ 238,/m/05lls,"Opera"
241
+ 239,/m/02lkt,"Electronic music"
242
+ 240,/m/03mb9,"House music"
243
+ 241,/m/07gxw,"Techno"
244
+ 242,/m/07s72n,"Dubstep"
245
+ 243,/m/0283d,"Drum and bass"
246
+ 244,/m/0m0jc,"Electronica"
247
+ 245,/m/08cyft,"Electronic dance music"
248
+ 246,/m/0fd3y,"Ambient music"
249
+ 247,/m/07lnk,"Trance music"
250
+ 248,/m/0g293,"Music of Latin America"
251
+ 249,/m/0ln16,"Salsa music"
252
+ 250,/m/0326g,"Flamenco"
253
+ 251,/m/0155w,"Blues"
254
+ 252,/m/05fw6t,"Music for children"
255
+ 253,/m/02v2lh,"New-age music"
256
+ 254,/m/0y4f8,"Vocal music"
257
+ 255,/m/0z9c,"A capella"
258
+ 256,/m/0164x2,"Music of Africa"
259
+ 257,/m/0145m,"Afrobeat"
260
+ 258,/m/02mscn,"Christian music"
261
+ 259,/m/016cjb,"Gospel music"
262
+ 260,/m/028sqc,"Music of Asia"
263
+ 261,/m/015vgc,"Carnatic music"
264
+ 262,/m/0dq0md,"Music of Bollywood"
265
+ 263,/m/06rqw,"Ska"
266
+ 264,/m/02p0sh1,"Traditional music"
267
+ 265,/m/05rwpb,"Independent music"
268
+ 266,/m/074ft,"Song"
269
+ 267,/m/025td0t,"Background music"
270
+ 268,/m/02cjck,"Theme music"
271
+ 269,/m/03r5q_,"Jingle (music)"
272
+ 270,/m/0l14gg,"Soundtrack music"
273
+ 271,/m/07pkxdp,"Lullaby"
274
+ 272,/m/01z7dr,"Video game music"
275
+ 273,/m/0140xf,"Christmas music"
276
+ 274,/m/0ggx5q,"Dance music"
277
+ 275,/m/04wptg,"Wedding music"
278
+ 276,/t/dd00031,"Happy music"
279
+ 277,/t/dd00032,"Funny music"
280
+ 278,/t/dd00033,"Sad music"
281
+ 279,/t/dd00034,"Tender music"
282
+ 280,/t/dd00035,"Exciting music"
283
+ 281,/t/dd00036,"Angry music"
284
+ 282,/t/dd00037,"Scary music"
285
+ 283,/m/03m9d0z,"Wind"
286
+ 284,/m/09t49,"Rustling leaves"
287
+ 285,/t/dd00092,"Wind noise (microphone)"
288
+ 286,/m/0jb2l,"Thunderstorm"
289
+ 287,/m/0ngt1,"Thunder"
290
+ 288,/m/0838f,"Water"
291
+ 289,/m/06mb1,"Rain"
292
+ 290,/m/07r10fb,"Raindrop"
293
+ 291,/t/dd00038,"Rain on surface"
294
+ 292,/m/0j6m2,"Stream"
295
+ 293,/m/0j2kx,"Waterfall"
296
+ 294,/m/05kq4,"Ocean"
297
+ 295,/m/034srq,"Waves, surf"
298
+ 296,/m/06wzb,"Steam"
299
+ 297,/m/07swgks,"Gurgling"
300
+ 298,/m/02_41,"Fire"
301
+ 299,/m/07pzfmf,"Crackle"
302
+ 300,/m/07yv9,"Vehicle"
303
+ 301,/m/019jd,"Boat, Water vehicle"
304
+ 302,/m/0hsrw,"Sailboat, sailing ship"
305
+ 303,/m/056ks2,"Rowboat, canoe, kayak"
306
+ 304,/m/02rlv9,"Motorboat, speedboat"
307
+ 305,/m/06q74,"Ship"
308
+ 306,/m/012f08,"Motor vehicle (road)"
309
+ 307,/m/0k4j,"Car"
310
+ 308,/m/0912c9,"Vehicle horn, car horn, honking"
311
+ 309,/m/07qv_d5,"Toot"
312
+ 310,/m/02mfyn,"Car alarm"
313
+ 311,/m/04gxbd,"Power windows, electric windows"
314
+ 312,/m/07rknqz,"Skidding"
315
+ 313,/m/0h9mv,"Tire squeal"
316
+ 314,/t/dd00134,"Car passing by"
317
+ 315,/m/0ltv,"Race car, auto racing"
318
+ 316,/m/07r04,"Truck"
319
+ 317,/m/0gvgw0,"Air brake"
320
+ 318,/m/05x_td,"Air horn, truck horn"
321
+ 319,/m/02rhddq,"Reversing beeps"
322
+ 320,/m/03cl9h,"Ice cream truck, ice cream van"
323
+ 321,/m/01bjv,"Bus"
324
+ 322,/m/03j1ly,"Emergency vehicle"
325
+ 323,/m/04qvtq,"Police car (siren)"
326
+ 324,/m/012n7d,"Ambulance (siren)"
327
+ 325,/m/012ndj,"Fire engine, fire truck (siren)"
328
+ 326,/m/04_sv,"Motorcycle"
329
+ 327,/m/0btp2,"Traffic noise, roadway noise"
330
+ 328,/m/06d_3,"Rail transport"
331
+ 329,/m/07jdr,"Train"
332
+ 330,/m/04zmvq,"Train whistle"
333
+ 331,/m/0284vy3,"Train horn"
334
+ 332,/m/01g50p,"Railroad car, train wagon"
335
+ 333,/t/dd00048,"Train wheels squealing"
336
+ 334,/m/0195fx,"Subway, metro, underground"
337
+ 335,/m/0k5j,"Aircraft"
338
+ 336,/m/014yck,"Aircraft engine"
339
+ 337,/m/04229,"Jet engine"
340
+ 338,/m/02l6bg,"Propeller, airscrew"
341
+ 339,/m/09ct_,"Helicopter"
342
+ 340,/m/0cmf2,"Fixed-wing aircraft, airplane"
343
+ 341,/m/0199g,"Bicycle"
344
+ 342,/m/06_fw,"Skateboard"
345
+ 343,/m/02mk9,"Engine"
346
+ 344,/t/dd00065,"Light engine (high frequency)"
347
+ 345,/m/08j51y,"Dental drill, dentist's drill"
348
+ 346,/m/01yg9g,"Lawn mower"
349
+ 347,/m/01j4z9,"Chainsaw"
350
+ 348,/t/dd00066,"Medium engine (mid frequency)"
351
+ 349,/t/dd00067,"Heavy engine (low frequency)"
352
+ 350,/m/01h82_,"Engine knocking"
353
+ 351,/t/dd00130,"Engine starting"
354
+ 352,/m/07pb8fc,"Idling"
355
+ 353,/m/07q2z82,"Accelerating, revving, vroom"
356
+ 354,/m/02dgv,"Door"
357
+ 355,/m/03wwcy,"Doorbell"
358
+ 356,/m/07r67yg,"Ding-dong"
359
+ 357,/m/02y_763,"Sliding door"
360
+ 358,/m/07rjzl8,"Slam"
361
+ 359,/m/07r4wb8,"Knock"
362
+ 360,/m/07qcpgn,"Tap"
363
+ 361,/m/07q6cd_,"Squeak"
364
+ 362,/m/0642b4,"Cupboard open or close"
365
+ 363,/m/0fqfqc,"Drawer open or close"
366
+ 364,/m/04brg2,"Dishes, pots, and pans"
367
+ 365,/m/023pjk,"Cutlery, silverware"
368
+ 366,/m/07pn_8q,"Chopping (food)"
369
+ 367,/m/0dxrf,"Frying (food)"
370
+ 368,/m/0fx9l,"Microwave oven"
371
+ 369,/m/02pjr4,"Blender"
372
+ 370,/m/02jz0l,"Water tap, faucet"
373
+ 371,/m/0130jx,"Sink (filling or washing)"
374
+ 372,/m/03dnzn,"Bathtub (filling or washing)"
375
+ 373,/m/03wvsk,"Hair dryer"
376
+ 374,/m/01jt3m,"Toilet flush"
377
+ 375,/m/012xff,"Toothbrush"
378
+ 376,/m/04fgwm,"Electric toothbrush"
379
+ 377,/m/0d31p,"Vacuum cleaner"
380
+ 378,/m/01s0vc,"Zipper (clothing)"
381
+ 379,/m/03v3yw,"Keys jangling"
382
+ 380,/m/0242l,"Coin (dropping)"
383
+ 381,/m/01lsmm,"Scissors"
384
+ 382,/m/02g901,"Electric shaver, electric razor"
385
+ 383,/m/05rj2,"Shuffling cards"
386
+ 384,/m/0316dw,"Typing"
387
+ 385,/m/0c2wf,"Typewriter"
388
+ 386,/m/01m2v,"Computer keyboard"
389
+ 387,/m/081rb,"Writing"
390
+ 388,/m/07pp_mv,"Alarm"
391
+ 389,/m/07cx4,"Telephone"
392
+ 390,/m/07pp8cl,"Telephone bell ringing"
393
+ 391,/m/01hnzm,"Ringtone"
394
+ 392,/m/02c8p,"Telephone dialing, DTMF"
395
+ 393,/m/015jpf,"Dial tone"
396
+ 394,/m/01z47d,"Busy signal"
397
+ 395,/m/046dlr,"Alarm clock"
398
+ 396,/m/03kmc9,"Siren"
399
+ 397,/m/0dgbq,"Civil defense siren"
400
+ 398,/m/030rvx,"Buzzer"
401
+ 399,/m/01y3hg,"Smoke detector, smoke alarm"
402
+ 400,/m/0c3f7m,"Fire alarm"
403
+ 401,/m/04fq5q,"Foghorn"
404
+ 402,/m/0l156k,"Whistle"
405
+ 403,/m/06hck5,"Steam whistle"
406
+ 404,/t/dd00077,"Mechanisms"
407
+ 405,/m/02bm9n,"Ratchet, pawl"
408
+ 406,/m/01x3z,"Clock"
409
+ 407,/m/07qjznt,"Tick"
410
+ 408,/m/07qjznl,"Tick-tock"
411
+ 409,/m/0l7xg,"Gears"
412
+ 410,/m/05zc1,"Pulleys"
413
+ 411,/m/0llzx,"Sewing machine"
414
+ 412,/m/02x984l,"Mechanical fan"
415
+ 413,/m/025wky1,"Air conditioning"
416
+ 414,/m/024dl,"Cash register"
417
+ 415,/m/01m4t,"Printer"
418
+ 416,/m/0dv5r,"Camera"
419
+ 417,/m/07bjf,"Single-lens reflex camera"
420
+ 418,/m/07k1x,"Tools"
421
+ 419,/m/03l9g,"Hammer"
422
+ 420,/m/03p19w,"Jackhammer"
423
+ 421,/m/01b82r,"Sawing"
424
+ 422,/m/02p01q,"Filing (rasp)"
425
+ 423,/m/023vsd,"Sanding"
426
+ 424,/m/0_ksk,"Power tool"
427
+ 425,/m/01d380,"Drill"
428
+ 426,/m/014zdl,"Explosion"
429
+ 427,/m/032s66,"Gunshot, gunfire"
430
+ 428,/m/04zjc,"Machine gun"
431
+ 429,/m/02z32qm,"Fusillade"
432
+ 430,/m/0_1c,"Artillery fire"
433
+ 431,/m/073cg4,"Cap gun"
434
+ 432,/m/0g6b5,"Fireworks"
435
+ 433,/g/122z_qxw,"Firecracker"
436
+ 434,/m/07qsvvw,"Burst, pop"
437
+ 435,/m/07pxg6y,"Eruption"
438
+ 436,/m/07qqyl4,"Boom"
439
+ 437,/m/083vt,"Wood"
440
+ 438,/m/07pczhz,"Chop"
441
+ 439,/m/07pl1bw,"Splinter"
442
+ 440,/m/07qs1cx,"Crack"
443
+ 441,/m/039jq,"Glass"
444
+ 442,/m/07q7njn,"Chink, clink"
445
+ 443,/m/07rn7sz,"Shatter"
446
+ 444,/m/04k94,"Liquid"
447
+ 445,/m/07rrlb6,"Splash, splatter"
448
+ 446,/m/07p6mqd,"Slosh"
449
+ 447,/m/07qlwh6,"Squish"
450
+ 448,/m/07r5v4s,"Drip"
451
+ 449,/m/07prgkl,"Pour"
452
+ 450,/m/07pqc89,"Trickle, dribble"
453
+ 451,/t/dd00088,"Gush"
454
+ 452,/m/07p7b8y,"Fill (with liquid)"
455
+ 453,/m/07qlf79,"Spray"
456
+ 454,/m/07ptzwd,"Pump (liquid)"
457
+ 455,/m/07ptfmf,"Stir"
458
+ 456,/m/0dv3j,"Boiling"
459
+ 457,/m/0790c,"Sonar"
460
+ 458,/m/0dl83,"Arrow"
461
+ 459,/m/07rqsjt,"Whoosh, swoosh, swish"
462
+ 460,/m/07qnq_y,"Thump, thud"
463
+ 461,/m/07rrh0c,"Thunk"
464
+ 462,/m/0b_fwt,"Electronic tuner"
465
+ 463,/m/02rr_,"Effects unit"
466
+ 464,/m/07m2kt,"Chorus effect"
467
+ 465,/m/018w8,"Basketball bounce"
468
+ 466,/m/07pws3f,"Bang"
469
+ 467,/m/07ryjzk,"Slap, smack"
470
+ 468,/m/07rdhzs,"Whack, thwack"
471
+ 469,/m/07pjjrj,"Smash, crash"
472
+ 470,/m/07pc8lb,"Breaking"
473
+ 471,/m/07pqn27,"Bouncing"
474
+ 472,/m/07rbp7_,"Whip"
475
+ 473,/m/07pyf11,"Flap"
476
+ 474,/m/07qb_dv,"Scratch"
477
+ 475,/m/07qv4k0,"Scrape"
478
+ 476,/m/07pdjhy,"Rub"
479
+ 477,/m/07s8j8t,"Roll"
480
+ 478,/m/07plct2,"Crushing"
481
+ 479,/t/dd00112,"Crumpling, crinkling"
482
+ 480,/m/07qcx4z,"Tearing"
483
+ 481,/m/02fs_r,"Beep, bleep"
484
+ 482,/m/07qwdck,"Ping"
485
+ 483,/m/07phxs1,"Ding"
486
+ 484,/m/07rv4dm,"Clang"
487
+ 485,/m/07s02z0,"Squeal"
488
+ 486,/m/07qh7jl,"Creak"
489
+ 487,/m/07qwyj0,"Rustle"
490
+ 488,/m/07s34ls,"Whir"
491
+ 489,/m/07qmpdm,"Clatter"
492
+ 490,/m/07p9k1k,"Sizzle"
493
+ 491,/m/07qc9xj,"Clicking"
494
+ 492,/m/07rwm0c,"Clickety-clack"
495
+ 493,/m/07phhsh,"Rumble"
496
+ 494,/m/07qyrcz,"Plop"
497
+ 495,/m/07qfgpx,"Jingle, tinkle"
498
+ 496,/m/07rcgpl,"Hum"
499
+ 497,/m/07p78v5,"Zing"
500
+ 498,/t/dd00121,"Boing"
501
+ 499,/m/07s12q4,"Crunch"
502
+ 500,/m/028v0c,"Silence"
503
+ 501,/m/01v_m0,"Sine wave"
504
+ 502,/m/0b9m1,"Harmonic"
505
+ 503,/m/0hdsk,"Chirp tone"
506
+ 504,/m/0c1dj,"Sound effect"
507
+ 505,/m/07pt_g0,"Pulse"
508
+ 506,/t/dd00125,"Inside, small room"
509
+ 507,/t/dd00126,"Inside, large room or hall"
510
+ 508,/t/dd00127,"Inside, public space"
511
+ 509,/t/dd00128,"Outside, urban or manmade"
512
+ 510,/t/dd00129,"Outside, rural or natural"
513
+ 511,/m/01b9nn,"Reverberation"
514
+ 512,/m/01jnbd,"Echo"
515
+ 513,/m/096m7z,"Noise"
516
+ 514,/m/06_y0by,"Environmental noise"
517
+ 515,/m/07rgkc5,"Static"
518
+ 516,/m/06xkwv,"Mains hum"
519
+ 517,/m/0g12c5,"Distortion"
520
+ 518,/m/08p9q4,"Sidetone"
521
+ 519,/m/07szfh9,"Cacophony"
522
+ 520,/m/0chx_,"White noise"
523
+ 521,/m/0cj0r,"Pink noise"
524
+ 522,/m/07p_0gm,"Throbbing"
525
+ 523,/m/01jwx6,"Vibration"
526
+ 524,/m/07c52,"Television"
527
+ 525,/m/06bz3,"Radio"
528
+ 526,/m/07hvw1,"Field recording"
efficientat/models/MobileNetV3.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from typing import Any, Callable, List, Optional, Sequence, Tuple
3
+ from torch import nn, Tensor
4
+ import torch.nn.functional as F
5
+ from torchvision.ops.misc import ConvNormActivation
6
+ from torch.hub import load_state_dict_from_url
7
+ import urllib.parse
8
+
9
+
10
+ from efficientat.models.utils import cnn_out_size
11
+ from efficientat.models.block_types import InvertedResidualConfig, InvertedResidual
12
+ from efficientat.models.attention_pooling import MultiHeadAttentionPooling
13
+ from efficientat.helpers.utils import NAME_TO_WIDTH
14
+
15
+ # Adapted version of MobileNetV3 pytorch implementation
16
+ # https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py
17
+
18
+ # points to github releases
19
+ model_url = "https://github.com/fschmid56/EfficientAT/releases/download/v0.0.1/"
20
+ # folder to store downloaded models to
21
+ model_dir = "resources"
22
+
23
+
24
+ pretrained_models = {
25
+ # pytorch ImageNet pre-trained model
26
+ # own ImageNet pre-trained models will follow
27
+ # NOTE: for easy loading we provide the adapted state dict ready for AudioSet training (1 input channel,
28
+ # 527 output classes)
29
+ # NOTE: the classifier is just a random initialization, feature extractor (conv layers) is pre-trained
30
+ "mn10_im_pytorch": urllib.parse.urljoin(model_url, "mn10_im_pytorch.pt"),
31
+ # Models trained on AudioSet
32
+ "mn04_as": urllib.parse.urljoin(model_url, "mn04_as_mAP_432.pt"),
33
+ "mn05_as": urllib.parse.urljoin(model_url, "mn05_as_mAP_443.pt"),
34
+ "mn10_as": urllib.parse.urljoin(model_url, "mn10_as_mAP_471.pt"),
35
+ "mn20_as": urllib.parse.urljoin(model_url, "mn20_as_mAP_478.pt"),
36
+ "mn30_as": urllib.parse.urljoin(model_url, "mn30_as_mAP_482.pt"),
37
+ "mn40_as": urllib.parse.urljoin(model_url, "mn40_as_mAP_484.pt"),
38
+ "mn40_as(2)": urllib.parse.urljoin(model_url, "mn40_as_mAP_483.pt"),
39
+ "mn40_as(3)": urllib.parse.urljoin(model_url, "mn40_as_mAP_483(2).pt"),
40
+ "mn40_as_no_im_pre": urllib.parse.urljoin(model_url, "mn40_as_no_im_pre_mAP_483.pt"),
41
+ "mn40_as_no_im_pre(2)": urllib.parse.urljoin(model_url, "mn40_as_no_im_pre_mAP_483(2).pt"),
42
+ "mn40_as_no_im_pre(3)": urllib.parse.urljoin(model_url, "mn40_as_no_im_pre_mAP_482.pt"),
43
+ "mn40_as_ext": urllib.parse.urljoin(model_url, "mn40_as_ext_mAP_487.pt"),
44
+ "mn40_as_ext(2)": urllib.parse.urljoin(model_url, "mn40_as_ext_mAP_486.pt"),
45
+ "mn40_as_ext(3)": urllib.parse.urljoin(model_url, "mn40_as_ext_mAP_485.pt"),
46
+ # varying hop size (time resolution)
47
+ "mn10_as_hop_15": urllib.parse.urljoin(model_url, "mn10_as_hop_15_mAP_463.pt"),
48
+ "mn10_as_hop_20": urllib.parse.urljoin(model_url, "mn10_as_hop_20_mAP_456.pt"),
49
+ "mn10_as_hop_25": urllib.parse.urljoin(model_url, "mn10_as_hop_25_mAP_447.pt"),
50
+ # varying n_mels (frequency resolution)
51
+ "mn10_as_mels_40": urllib.parse.urljoin(model_url, "mn10_as_mels_40_mAP_453.pt"),
52
+ "mn10_as_mels_64": urllib.parse.urljoin(model_url, "mn10_as_mels_64_mAP_461.pt"),
53
+ "mn10_as_mels_256": urllib.parse.urljoin(model_url, "mn10_as_mels_256_mAP_474.pt"),
54
+ }
55
+
56
+
57
+ class MobileNetV3(nn.Module):
58
+ def __init__(
59
+ self,
60
+ inverted_residual_setting: List[InvertedResidualConfig],
61
+ last_channel: int,
62
+ num_classes: int = 1000,
63
+ block: Optional[Callable[..., nn.Module]] = None,
64
+ norm_layer: Optional[Callable[..., nn.Module]] = None,
65
+ dropout: float = 0.2,
66
+ in_conv_kernel: int = 3,
67
+ in_conv_stride: int = 2,
68
+ in_channels: int = 1,
69
+ **kwargs: Any,
70
+ ) -> None:
71
+ """
72
+ MobileNet V3 main class
73
+
74
+ Args:
75
+ inverted_residual_setting (List[InvertedResidualConfig]): Network structure
76
+ last_channel (int): The number of channels on the penultimate layer
77
+ num_classes (int): Number of classes
78
+ block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for models
79
+ norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
80
+ dropout (float): The droupout probability
81
+ in_conv_kernel (int): Size of kernel for first convolution
82
+ in_conv_stride (int): Size of stride for first convolution
83
+ in_channels (int): Number of input channels
84
+ """
85
+ super(MobileNetV3, self).__init__()
86
+
87
+ if not inverted_residual_setting:
88
+ raise ValueError("The inverted_residual_setting should not be empty")
89
+ elif not (
90
+ isinstance(inverted_residual_setting, Sequence)
91
+ and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
92
+ ):
93
+ raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
94
+
95
+ if block is None:
96
+ block = InvertedResidual
97
+
98
+ depthwise_norm_layer = norm_layer = \
99
+ norm_layer if norm_layer is not None else partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
100
+
101
+ layers: List[nn.Module] = []
102
+
103
+ kernel_sizes = [in_conv_kernel]
104
+ strides = [in_conv_stride]
105
+
106
+ # building first layer
107
+ firstconv_output_channels = inverted_residual_setting[0].input_channels
108
+ layers.append(
109
+ ConvNormActivation(
110
+ in_channels,
111
+ firstconv_output_channels,
112
+ kernel_size=in_conv_kernel,
113
+ stride=in_conv_stride,
114
+ norm_layer=norm_layer,
115
+ activation_layer=nn.Hardswish,
116
+ )
117
+ )
118
+
119
+ # get squeeze excitation config
120
+ se_cnf = kwargs.get('se_conf', None)
121
+
122
+ # building inverted residual blocks
123
+ # - keep track of size of frequency and time dimensions for possible application of Squeeze-and-Excitation
124
+ # on the frequency/time dimension
125
+ # - applying Squeeze-and-Excitation on the time dimension is not recommended as this constrains the network to
126
+ # a particular length of the audio clip, whereas Squeeze-and-Excitation on the frequency bands is fine,
127
+ # as the number of frequency bands is usually not changing
128
+ f_dim, t_dim = kwargs.get('input_dims', (128, 1000))
129
+ # take into account first conv layer
130
+ f_dim = cnn_out_size(f_dim, 1, 1, 3, 2)
131
+ t_dim = cnn_out_size(t_dim, 1, 1, 3, 2)
132
+ for cnf in inverted_residual_setting:
133
+ f_dim = cnf.out_size(f_dim)
134
+ t_dim = cnf.out_size(t_dim)
135
+ cnf.f_dim, cnf.t_dim = f_dim, t_dim # update dimensions in block config
136
+ layers.append(block(cnf, se_cnf, norm_layer, depthwise_norm_layer))
137
+ kernel_sizes.append(cnf.kernel)
138
+ strides.append(cnf.stride)
139
+
140
+ # building last several layers
141
+ lastconv_input_channels = inverted_residual_setting[-1].out_channels
142
+ lastconv_output_channels = 6 * lastconv_input_channels
143
+ layers.append(
144
+ ConvNormActivation(
145
+ lastconv_input_channels,
146
+ lastconv_output_channels,
147
+ kernel_size=1,
148
+ norm_layer=norm_layer,
149
+ activation_layer=nn.Hardswish,
150
+ )
151
+ )
152
+
153
+ self.features = nn.Sequential(*layers)
154
+ self.head_type = kwargs.get("head_type", False)
155
+ if self.head_type == "multihead_attention_pooling":
156
+ self.classifier = MultiHeadAttentionPooling(lastconv_output_channels, num_classes,
157
+ num_heads=kwargs.get("multihead_attention_heads"))
158
+ elif self.head_type == "fully_convolutional":
159
+ self.classifier = nn.Sequential(
160
+ nn.Conv2d(
161
+ lastconv_output_channels,
162
+ num_classes,
163
+ kernel_size=(1, 1),
164
+ stride=(1, 1),
165
+ padding=(0, 0),
166
+ bias=False),
167
+ nn.BatchNorm2d(num_classes),
168
+ nn.AdaptiveAvgPool2d((1, 1)),
169
+ )
170
+ elif self.head_type == "mlp":
171
+ self.classifier = nn.Sequential(
172
+ nn.AdaptiveAvgPool2d(1),
173
+ nn.Flatten(start_dim=1),
174
+ nn.Linear(lastconv_output_channels, last_channel),
175
+ nn.Hardswish(inplace=True),
176
+ nn.Dropout(p=dropout, inplace=True),
177
+ nn.Linear(last_channel, num_classes),
178
+ )
179
+ else:
180
+ raise NotImplementedError(f"Head '{self.head_type}' unknown. Must be one of: 'mlp', "
181
+ f"'fully_convolutional', 'multihead_attention_pooling'")
182
+
183
+ for m in self.modules():
184
+ if isinstance(m, nn.Conv2d):
185
+ nn.init.kaiming_normal_(m.weight, mode="fan_out")
186
+ if m.bias is not None:
187
+ nn.init.zeros_(m.bias)
188
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)):
189
+ nn.init.ones_(m.weight)
190
+ nn.init.zeros_(m.bias)
191
+ elif isinstance(m, nn.Linear):
192
+ nn.init.normal_(m.weight, 0, 0.01)
193
+ if m.bias is not None:
194
+ nn.init.zeros_(m.bias)
195
+
196
+ def _forward_impl(self, x: Tensor) -> (Tensor, Tensor):
197
+ x = self.features(x)
198
+ features = F.adaptive_avg_pool2d(x, (1, 1)).squeeze()
199
+ x = self.classifier(x).squeeze()
200
+ if features.dim() == 1 and x.dim() == 1:
201
+ # squeezed batch dimension
202
+ features = features.unsqueeze(0)
203
+ x = x.unsqueeze(0)
204
+ return x, features
205
+
206
+ def forward(self, x: Tensor) -> (Tensor, Tensor):
207
+ return self._forward_impl(x)
208
+
209
+
210
+ def _mobilenet_v3_conf(
211
+ width_mult: float = 1.0,
212
+ reduced_tail: bool = False,
213
+ dilated: bool = False,
214
+ c4_stride: int = 2,
215
+ **kwargs: Any
216
+ ):
217
+ reduce_divider = 2 if reduced_tail else 1
218
+ dilation = 2 if dilated else 1
219
+
220
+ bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
221
+ adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)
222
+
223
+ # InvertedResidualConfig:
224
+ # input_channels, kernel, expanded_channels, out_channels, use_se, activation, stride, dilation, width_mult
225
+ inverted_residual_setting = [
226
+ bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
227
+ bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1
228
+ bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
229
+ bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2
230
+ bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
231
+ bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
232
+ bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3
233
+ bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
234
+ bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
235
+ bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
236
+ bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
237
+ bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
238
+ bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", c4_stride, dilation), # C4
239
+ bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
240
+ bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
241
+ ]
242
+ last_channel = adjust_channels(1280 // reduce_divider)
243
+
244
+ return inverted_residual_setting, last_channel
245
+
246
+
247
+ def _mobilenet_v3(
248
+ inverted_residual_setting: List[InvertedResidualConfig],
249
+ last_channel: int,
250
+ pretrained_name: str,
251
+ **kwargs: Any,
252
+ ):
253
+ model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
254
+
255
+ if pretrained_name in pretrained_models:
256
+ model_url = pretrained_models.get(pretrained_name)
257
+ state_dict = load_state_dict_from_url(model_url, model_dir=model_dir, map_location="cpu")
258
+ if kwargs['num_classes'] != state_dict['classifier.5.bias'].size(0):
259
+ # if the number of logits is not matching the state dict,
260
+ # drop the corresponding pre-trained part
261
+ print(f"Number of classes defined: {kwargs['num_classes']}, "
262
+ f"but try to load pre-trained layer with logits: {state_dict['classifier.5.bias'].size(0)}\n"
263
+ "Dropping last layer.")
264
+ del state_dict['classifier.5.weight']
265
+ del state_dict['classifier.5.bias']
266
+ try:
267
+ model.load_state_dict(state_dict)
268
+ except RuntimeError as e:
269
+ print(str(e))
270
+ print("Loading weights pre-trained weights in a non-strict manner.")
271
+ model.load_state_dict(state_dict, strict=False)
272
+ elif pretrained_name:
273
+ raise NotImplementedError(f"Model name '{pretrained_name}' unknown.")
274
+ return model
275
+
276
+
277
+ def mobilenet_v3(pretrained_name: str = None, **kwargs: Any) \
278
+ -> MobileNetV3:
279
+ """
280
+ Constructs a MobileNetV3 architecture from
281
+ "Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>".
282
+ """
283
+ inverted_residual_setting, last_channel = _mobilenet_v3_conf(**kwargs)
284
+ return _mobilenet_v3(inverted_residual_setting, last_channel, pretrained_name, **kwargs)
285
+
286
+
287
+ def get_model(num_classes: int = 527, pretrained_name: str = None, width_mult: float = 1.0,
288
+ reduced_tail: bool = False, dilated: bool = False, c4_stride: int = 2, head_type: str = "mlp",
289
+ multihead_attention_heads: int = 4, input_dim_f: int = 128,
290
+ input_dim_t: int = 1000, se_dims: str = 'c', se_agg: str = "max", se_r: int = 4):
291
+ """
292
+ Arguments to modify the instantiation of a MobileNetv3
293
+
294
+ Args:
295
+ num_classes (int): Specifies number of classes to predict
296
+ pretrained_name (str): Specifies name of pre-trained model to load
297
+ width_mult (float): Scales width of network
298
+ reduced_tail (bool): Scales down network tail
299
+ dilated (bool): Applies dilated convolution to network tail
300
+ c4_stride (int): Set to '2' in original implementation;
301
+ might be changed to modify the size of receptive field
302
+ head_type (str): decides which classification head to use
303
+ multihead_attention_heads (int): number of heads in case 'multihead_attention_heads' is used
304
+ input_dim_f (int): number of frequency bands
305
+ input_dim_t (int): number of time frames
306
+ se_dims (Tuple): choose dimension to apply squeeze-excitation on, if multiple dimensions are chosen, then
307
+ squeeze-excitation is applied concurrently and se layer outputs are fused by se_agg operation
308
+ se_agg (str): operation to fuse output of concurrent se layers
309
+ se_r (int): squeeze excitation bottleneck size
310
+ se_dims (str): contains letters corresponding to dimensions 'c' - channel, 'f' - frequency, 't' - time
311
+ """
312
+
313
+ dim_map = {'c': 1, 'f': 2, 't': 3}
314
+ assert len(se_dims) <= 3 and all([s in dim_map.keys() for s in se_dims]) or se_dims == 'none'
315
+ input_dims = (input_dim_f, input_dim_t)
316
+ if se_dims == 'none':
317
+ se_dims = None
318
+ else:
319
+ se_dims = [dim_map[s] for s in se_dims]
320
+ se_conf = dict(se_dims=se_dims, se_agg=se_agg, se_r=se_r)
321
+ m = mobilenet_v3(pretrained_name=pretrained_name, num_classes=num_classes,
322
+ width_mult=width_mult, reduced_tail=reduced_tail, dilated=dilated, c4_stride=c4_stride,
323
+ head_type=head_type, multihead_attention_heads=multihead_attention_heads,
324
+ input_dims=input_dims, se_conf=se_conf
325
+ )
326
+ print(m)
327
+ return m
328
+
329
+
330
+ class EnsemblerModel(nn.Module):
331
+ def __init__(self, model_names):
332
+ super(EnsemblerModel, self).__init__()
333
+ self.models = nn.ModuleList([get_model(width_mult=NAME_TO_WIDTH(model_name), pretrained_name=model_name)
334
+ for model_name in model_names])
335
+
336
+ def forward(self, x):
337
+ all_out = None
338
+ for m in self.models:
339
+ out, _ = m(x)
340
+ if all_out is None:
341
+ all_out = out
342
+ else:
343
+ all_out = out + all_out
344
+ all_out = all_out / len(self.models)
345
+ return all_out, all_out
346
+
347
+
348
+ def get_ensemble_model(model_names):
349
+ return EnsemblerModel(model_names)
efficientat/models/attention_pooling.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch import Tensor
5
+
6
+ from efficientat.models.utils import collapse_dim
7
+
8
+
9
+ class MultiHeadAttentionPooling(nn.Module):
10
+ """Multi-Head Attention as used in PSLA paper (https://arxiv.org/pdf/2102.01243.pdf)
11
+ """
12
+ def __init__(self, in_dim, out_dim, att_activation: str = 'sigmoid',
13
+ clf_activation: str = 'ident', num_heads: int = 4, epsilon: float = 1e-7):
14
+ super(MultiHeadAttentionPooling, self).__init__()
15
+
16
+ self.in_dim = in_dim
17
+ self.out_dim = out_dim
18
+ self.num_heads = num_heads
19
+ self.epsilon = epsilon
20
+
21
+ self.att_activation = att_activation
22
+ self.clf_activation = clf_activation
23
+
24
+ # out size: out dim x 2 (att and clf paths) x num_heads
25
+ self.subspace_proj = nn.Linear(self.in_dim, self.out_dim * 2 * self.num_heads)
26
+ self.head_weight = nn.Parameter(torch.tensor([1.0 / self.num_heads] * self.num_heads).view(1, -1, 1))
27
+
28
+ def activate(self, x, activation):
29
+ if activation == 'linear':
30
+ return x
31
+ elif activation == 'relu':
32
+ return F.relu(x)
33
+ elif activation == 'sigmoid':
34
+ return torch.sigmoid(x)
35
+ elif activation == 'softmax':
36
+ return F.softmax(x, dim=1)
37
+ elif activation == 'ident':
38
+ return x
39
+
40
+ def forward(self, x) -> Tensor:
41
+ """x: Tensor of size (batch_size, channels, frequency bands, sequence length)
42
+ """
43
+ x = collapse_dim(x, dim=2) # results in tensor of size (batch_size, channels, sequence_length)
44
+ x = x.transpose(1, 2) # results in tensor of size (batch_size, sequence_length, channels)
45
+ b, n, c = x.shape
46
+
47
+ x = self.subspace_proj(x).reshape(b, n, 2, self.num_heads, self.out_dim).permute(2, 0, 3, 1, 4)
48
+ att, val = x[0], x[1]
49
+ val = self.activate(val, self.clf_activation)
50
+ att = self.activate(att, self.att_activation)
51
+ att = torch.clamp(att, self.epsilon, 1. - self.epsilon)
52
+ att = att / torch.sum(att, dim=2, keepdim=True)
53
+
54
+ out = torch.sum(att * val, dim=2) * self.head_weight
55
+ out = torch.sum(out, dim=1)
56
+ return out
efficientat/models/block_types.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Callable, List
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch import Tensor
5
+ from torchvision.ops.misc import ConvNormActivation
6
+
7
+ from efficientat.models.utils import make_divisible, cnn_out_size
8
+
9
+
10
+
11
+ class ConcurrentSEBlock(torch.nn.Module):
12
+ def __init__(
13
+ self,
14
+ c_dim: int,
15
+ f_dim: int,
16
+ t_dim: int,
17
+ se_cnf: Dict
18
+ ) -> None:
19
+ super().__init__()
20
+ dims = [c_dim, f_dim, t_dim]
21
+ self.conc_se_layers = nn.ModuleList()
22
+ for d in se_cnf['se_dims']:
23
+ input_dim = dims[d-1]
24
+ squeeze_dim = make_divisible(input_dim // se_cnf['se_r'], 8)
25
+ self.conc_se_layers.append(SqueezeExcitation(input_dim, squeeze_dim, d))
26
+ if se_cnf['se_agg'] == "max":
27
+ self.agg_op = lambda x: torch.max(x, dim=0)[0]
28
+ elif se_cnf['se_agg'] == "avg":
29
+ self.agg_op = lambda x: torch.mean(x, dim=0)
30
+ elif se_cnf['se_agg'] == "add":
31
+ self.agg_op = lambda x: torch.sum(x, dim=0)
32
+ elif se_cnf['se_agg'] == "min":
33
+ self.agg_op = lambda x: torch.min(x, dim=0)[0]
34
+ else:
35
+ raise NotImplementedError(f"SE aggregation operation '{self.agg_op}' not implemented")
36
+
37
+ def forward(self, input: Tensor) -> Tensor:
38
+ # apply all concurrent se layers
39
+ se_outs = []
40
+ for se_layer in self.conc_se_layers:
41
+ se_outs.append(se_layer(input))
42
+ out = self.agg_op(torch.stack(se_outs, dim=0))
43
+ return out
44
+
45
+
46
+ class SqueezeExcitation(torch.nn.Module):
47
+ """
48
+ This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507.
49
+ Args:
50
+ input_dim (int): Input dimension
51
+ squeeze_dim (int): Size of Bottleneck
52
+ activation (Callable): activation applied to bottleneck
53
+ scale_activation (Callable): activation applied to the output
54
+ """
55
+
56
+ def __init__(
57
+ self,
58
+ input_dim: int,
59
+ squeeze_dim: int,
60
+ se_dim: int,
61
+ activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
62
+ scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
63
+ ) -> None:
64
+ super().__init__()
65
+ self.fc1 = torch.nn.Linear(input_dim, squeeze_dim)
66
+ self.fc2 = torch.nn.Linear(squeeze_dim, input_dim)
67
+ assert se_dim in [1, 2, 3]
68
+ self.se_dim = [1, 2, 3]
69
+ self.se_dim.remove(se_dim)
70
+ self.activation = activation()
71
+ self.scale_activation = scale_activation()
72
+
73
+ def _scale(self, input: Tensor) -> Tensor:
74
+ scale = torch.mean(input, self.se_dim, keepdim=True)
75
+ shape = scale.size()
76
+ scale = self.fc1(scale.squeeze(2).squeeze(2))
77
+ scale = self.activation(scale)
78
+ scale = self.fc2(scale)
79
+ scale = scale
80
+ return self.scale_activation(scale).view(shape)
81
+
82
+ def forward(self, input: Tensor) -> Tensor:
83
+ scale = self._scale(input)
84
+ return scale * input
85
+
86
+
87
+ class InvertedResidualConfig:
88
+ # Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
89
+ def __init__(
90
+ self,
91
+ input_channels: int,
92
+ kernel: int,
93
+ expanded_channels: int,
94
+ out_channels: int,
95
+ use_se: bool,
96
+ activation: str,
97
+ stride: int,
98
+ dilation: int,
99
+ width_mult: float,
100
+ ):
101
+ self.input_channels = self.adjust_channels(input_channels, width_mult)
102
+ self.kernel = kernel
103
+ self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
104
+ self.out_channels = self.adjust_channels(out_channels, width_mult)
105
+ self.use_se = use_se
106
+ self.use_hs = activation == "HS"
107
+ self.stride = stride
108
+ self.dilation = dilation
109
+ self.f_dim = None
110
+ self.t_dim = None
111
+
112
+ @staticmethod
113
+ def adjust_channels(channels: int, width_mult: float):
114
+ return make_divisible(channels * width_mult, 8)
115
+
116
+ def out_size(self, in_size):
117
+ padding = (self.kernel - 1) // 2 * self.dilation
118
+ return cnn_out_size(in_size, padding, self.dilation, self.kernel, self.stride)
119
+
120
+
121
+ class InvertedResidual(nn.Module):
122
+ def __init__(
123
+ self,
124
+ cnf: InvertedResidualConfig,
125
+ se_cnf: Dict,
126
+ norm_layer: Callable[..., nn.Module],
127
+ depthwise_norm_layer: Callable[..., nn.Module]
128
+ ):
129
+ super().__init__()
130
+ if not (1 <= cnf.stride <= 2):
131
+ raise ValueError("illegal stride value")
132
+
133
+ self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
134
+
135
+ layers: List[nn.Module] = []
136
+ activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
137
+
138
+ # expand
139
+ if cnf.expanded_channels != cnf.input_channels:
140
+ layers.append(
141
+ ConvNormActivation(
142
+ cnf.input_channels,
143
+ cnf.expanded_channels,
144
+ kernel_size=1,
145
+ norm_layer=norm_layer,
146
+ activation_layer=activation_layer,
147
+ )
148
+ )
149
+
150
+ # depthwise
151
+ stride = 1 if cnf.dilation > 1 else cnf.stride
152
+ layers.append(
153
+ ConvNormActivation(
154
+ cnf.expanded_channels,
155
+ cnf.expanded_channels,
156
+ kernel_size=cnf.kernel,
157
+ stride=stride,
158
+ dilation=cnf.dilation,
159
+ groups=cnf.expanded_channels,
160
+ norm_layer=depthwise_norm_layer,
161
+ activation_layer=activation_layer,
162
+ )
163
+ )
164
+ if cnf.use_se and se_cnf['se_dims'] is not None:
165
+ layers.append(ConcurrentSEBlock(cnf.expanded_channels, cnf.f_dim, cnf.t_dim, se_cnf))
166
+
167
+ # project
168
+ layers.append(
169
+ ConvNormActivation(
170
+ cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
171
+ )
172
+ )
173
+
174
+ self.block = nn.Sequential(*layers)
175
+ self.out_channels = cnf.out_channels
176
+ self._is_cn = cnf.stride > 1
177
+
178
+ def forward(self, inp: Tensor) -> Tensor:
179
+ result = self.block(inp)
180
+ if self.use_res_connect:
181
+ result += inp
182
+ return result
efficientat/models/preprocess.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torchaudio
3
+ import torch
4
+
5
+
6
+ class AugmentMelSTFT(nn.Module):
7
+ def __init__(self, n_mels=128, sr=32000, win_length=800, hopsize=320, n_fft=1024, freqm=48, timem=192,
8
+ fmin=0.0, fmax=None, fmin_aug_range=10, fmax_aug_range=2000):
9
+ torch.nn.Module.__init__(self)
10
+ # adapted from: https://github.com/CPJKU/kagglebirds2020/commit/70f8308b39011b09d41eb0f4ace5aa7d2b0e806e
11
+
12
+ self.win_length = win_length
13
+ self.n_mels = n_mels
14
+ self.n_fft = n_fft
15
+ self.sr = sr
16
+ self.fmin = fmin
17
+ if fmax is None:
18
+ fmax = sr // 2 - fmax_aug_range // 2
19
+ print(f"Warning: FMAX is None setting to {fmax} ")
20
+ self.fmax = fmax
21
+ self.hopsize = hopsize
22
+ self.register_buffer('window',
23
+ torch.hann_window(win_length, periodic=False),
24
+ persistent=False)
25
+ assert fmin_aug_range >= 1, f"fmin_aug_range={fmin_aug_range} should be >=1; 1 means no augmentation"
26
+ assert fmax_aug_range >= 1, f"fmax_aug_range={fmax_aug_range} should be >=1; 1 means no augmentation"
27
+ self.fmin_aug_range = fmin_aug_range
28
+ self.fmax_aug_range = fmax_aug_range
29
+
30
+ self.register_buffer("preemphasis_coefficient", torch.as_tensor([[[-.97, 1]]]), persistent=False)
31
+ if freqm == 0:
32
+ self.freqm = torch.nn.Identity()
33
+ else:
34
+ self.freqm = torchaudio.transforms.FrequencyMasking(freqm, iid_masks=True)
35
+ if timem == 0:
36
+ self.timem = torch.nn.Identity()
37
+ else:
38
+ self.timem = torchaudio.transforms.TimeMasking(timem, iid_masks=True)
39
+
40
+ def forward(self, x):
41
+ x = nn.functional.conv1d(x.unsqueeze(1), self.preemphasis_coefficient).squeeze(1)
42
+ x = torch.stft(x, self.n_fft, hop_length=self.hopsize, win_length=self.win_length,
43
+ center=True, normalized=False, window=self.window, return_complex=False)
44
+ x = (x ** 2).sum(dim=-1) # power mag
45
+ fmin = self.fmin + torch.randint(self.fmin_aug_range, (1,)).item()
46
+ fmax = self.fmax + self.fmax_aug_range // 2 - torch.randint(self.fmax_aug_range, (1,)).item()
47
+ # don't augment eval data
48
+ if not self.training:
49
+ fmin = self.fmin
50
+ fmax = self.fmax
51
+
52
+ mel_basis, _ = torchaudio.compliance.kaldi.get_mel_banks(self.n_mels, self.n_fft, self.sr,
53
+ fmin, fmax, vtln_low=100.0, vtln_high=-500., vtln_warp_factor=1.0)
54
+ mel_basis = torch.as_tensor(torch.nn.functional.pad(mel_basis, (0, 1), mode='constant', value=0),
55
+ device=x.device)
56
+ with torch.cuda.amp.autocast(enabled=False):
57
+ melspec = torch.matmul(mel_basis, x)
58
+
59
+ melspec = (melspec + 0.00001).log()
60
+
61
+ if self.training:
62
+ melspec = self.freqm(melspec)
63
+ melspec = self.timem(melspec)
64
+
65
+ melspec = (melspec + 4.5) / 5. # fast normalization
66
+
67
+ return melspec
efficientat/models/utils.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional, Callable
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch import Tensor
6
+
7
+
8
+ def make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:
9
+ """
10
+ This function is taken from the original tf repo.
11
+ It ensures that all layers have a channel number that is divisible by 8
12
+ It can be seen here:
13
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
14
+ """
15
+ if min_value is None:
16
+ min_value = divisor
17
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
18
+ # Make sure that round down does not go down by more than 10%.
19
+ if new_v < 0.9 * v:
20
+ new_v += divisor
21
+ return new_v
22
+
23
+
24
+ def cnn_out_size(in_size, padding, dilation, kernel, stride):
25
+ s = in_size + 2 * padding - dilation * (kernel - 1) - 1
26
+ return math.floor(s / stride + 1)
27
+
28
+
29
+ def collapse_dim(x: Tensor, dim: int, mode: str = "pool", pool_fn: Callable[[Tensor, int], Tensor] = torch.mean,
30
+ combine_dim: int = None):
31
+ """
32
+ Collapses dimension of multi-dimensional tensor by pooling or combining dimensions
33
+ :param x: input Tensor
34
+ :param dim: dimension to collapse
35
+ :param mode: 'pool' or 'combine'
36
+ :param pool_fn: function to be applied in case of pooling
37
+ :param combine_dim: dimension to join 'dim' to
38
+ :return: collapsed tensor
39
+ """
40
+ if mode == "pool":
41
+ return pool_fn(x, dim)
42
+ elif mode == "combine":
43
+ s = list(x.size())
44
+ s[combine_dim] *= dim
45
+ s[dim] //= dim
46
+ return x.view(s)
47
+
48
+
49
+ class CollapseDim(nn.Module):
50
+ def __init__(self, dim: int, mode: str = "pool", pool_fn: Callable[[Tensor, int], Tensor] = torch.mean,
51
+ combine_dim: int = None):
52
+ super(CollapseDim, self).__init__()
53
+ self.dim = dim
54
+ self.mode = mode
55
+ self.pool_fn = pool_fn
56
+ self.combine_dim = combine_dim
57
+
58
+ def forward(self, x):
59
+ return collapse_dim(x, dim=self.dim, mode=self.mode, pool_fn=self.pool_fn, combine_dim=self.combine_dim)
efficientat/resources/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Download the latest version from this repo's Github Releases and place them inside this folder.
efficientat/resources/metro_station-paris.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75d28a33f45fd6eebd862bb25a3738dd83b7aa92ad64c26d5b1879ff2a715b3f
3
+ size 1323044
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libsndfile1
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ av==10.0.0
2
+ h5py==3.7.0
3
+ librosa=0.9.2
4
+ torch