Spaces:
Runtime error
Runtime error
// Various helper functions and utilities | |
// | |
// CLI argument parsing | |
// | |
struct gpt_params { | |
int32_t seed = -1; // RNG seed | |
int32_t n_threads = std::min(16, (int32_t) std::thread::hardware_concurrency()); | |
int32_t n_predict = 128; // new tokens to predict | |
int32_t repeat_last_n = 64; // last n tokens to penalize | |
int32_t n_ctx = 512; //context size | |
// sampling parameters | |
int32_t top_k = 40; | |
float top_p = 0.95f; | |
float temp = 0.80f; | |
float repeat_penalty = 1.30f; | |
int32_t n_batch = 8; // batch size for prompt processing | |
std::string model = "ggml-model-fp16.bin"; // model path | |
std::string prompt; | |
bool use_color = false; // use color to distinguish generations and inputs | |
bool use_shards = false; // whether load from n_part shards or just 1 single model | |
bool interactive = false; // interactive mode | |
bool interactive_start = false; // reverse prompt immediately | |
std::string antiprompt = ""; // string upon seeing which more user input is prompted | |
}; | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params); | |
void gpt_print_usage(int argc, char ** argv, const gpt_params & params); | |
std::string gpt_random_prompt(std::mt19937 & rng); | |
// | |
// Vocab utils | |
// | |
struct gpt_vocab { | |
using id = int32_t; | |
using token = std::string; | |
std::map<token, id> token_to_id; | |
std::map<id, token> id_to_token; | |
}; | |
void replace(std::string & str, const std::string & needle, const std::string & replacement); | |
// poor-man's JSON parsing | |
std::map<std::string, int32_t> json_parse(const std::string & fname); | |
// split text into tokens | |
// | |
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 | |
// | |
// Regex (Python): | |
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" | |
// | |
// Regex (C++): | |
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" | |
// | |
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text); | |
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works .. | |
// ref: https://github.com/google/sentencepiece | |
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos); | |
// load the tokens from encoder.json | |
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); | |
// sample next token given probabilities for each embedding | |
// | |
// - consider only the top K tokens | |
// - from them, consider only the top tokens with cumulative probability > P | |
// | |
gpt_vocab::id llama_sample_top_p_top_k( | |
const gpt_vocab & vocab, | |
const float * logits, | |
std::vector<gpt_vocab::id> & last_n_tokens, | |
double repeat_penalty, | |
int top_k, | |
double top_p, | |
double temp, | |
std::mt19937 & rng); | |
// filer to top K tokens from list of logits | |
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k); | |
// | |
// Quantization | |
// | |
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist); | |
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist); | |