Spaces:
Runtime error
Runtime error
File size: 16,748 Bytes
fa6856c 83f63dc fa6856c 83f63dc fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import sys
import torch
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import transformers
import json
import gradio as gr
import argparse
import warnings
import os
from datetime import datetime
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM, printf
import utils
import copy
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
import prompt
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--lora_path", type=str, default='')
parser.add_argument("--use_typewriter", type=int, default=1)
parser.add_argument("--prompt_type", type=str, default='chat')
parser.add_argument("--share_link", type=int, default=0)
parser.add_argument("--show_beam", type=int, default=0)
parser.add_argument("--int8", type=int, default=1)
args = parser.parse_args()
args.fix_token = True
printf('>>> args:', args)
LOAD_8BIT = args.int8
BASE_MODEL = args.model_path
LORA_WEIGHTS = "teachyourselfcoding/llama-2-13b-22sep"
BASE_MODEL="ziqingyang/chinese-llama-2-13b"
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
if args.lora_path != '' and os.path.exists(args.lora_path):
if not os.path.exists(lora_bin_path):
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
printf('>>> load lora from', pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn(
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'"
)
else:
assert ('Checkpoint is not Found!')
else:
printf('>>> load lora from', lora_bin_path)
else:
printf('>>> load lora from huggingface url', args.lora_path)
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
print(f'>>> load raw models from {BASE_MODEL}')
if args.lora_path == "":
model = StreamLlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map={"": 0},
)
else:
print(f'>>> load lora models from {LORA_WEIGHTS}')
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map={"": 0},
)
model = StreamPeftGenerationMixin.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, load_in_8bit=LOAD_8BIT, device_map={"": 0}
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
# fix tokenizer bug
if args.fix_token and tokenizer.eos_token_id != 2:
warnings.warn(
"The tokenizer eos token may be wrong. please check you llama-checkpoint"
)
model.config.bos_token_id = tokenizer.bos_token_id = 1
model.config.eos_token_id = tokenizer.eos_token_id = 2
model.config.pad_token_id = tokenizer.pad_token_id = 0 # same as unk token id
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def save(
inputs,
history,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
min_new_tokens=1,
repetition_penalty=2.0,
max_memory=1024,
do_sample=False,
prompt_type='0',
**kwargs,
):
history = [] if history is None else history
data_point = {}
if prompt_type == 'instruct':
PROMPT = prompt.instruct_prompt(tokenizer,max_memory)
elif prompt_type == 'chat':
PROMPT = prompt.chat_prompt(tokenizer,max_memory)
else:
raise Exception('not support')
data_point['history'] = history
# 实际上是每一步都可以不一样,这里只保存最后一步
data_point['generation_parameter'] = {
"temperature":temperature,
"top_p":top_p,
"top_k":top_k,
"num_beams":num_beams,
"bos_token_id":tokenizer.bos_token_id,
"eos_token_id":tokenizer.eos_token_id,
"pad_token_id":tokenizer.pad_token_id,
"max_new_tokens":max_new_tokens,
"min_new_tokens":min_new_tokens,
"do_sample":do_sample,
"repetition_penalty":repetition_penalty,
"max_memory":max_memory,
}
data_point['info'] = args.__dict__
print(data_point)
if args.int8:
file_name = f"{args.lora_path}/{args.prompt_type.replace(' ','_')}_int8.jsonl"
else:
file_name = f"{args.lora_path}/{args.prompt_type.replace(' ','_')}_fp16.jsonl"
utils.to_jsonl([data_point], file_name)
def evaluate(
inputs,
history,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
min_new_tokens=1,
repetition_penalty=2.0,
max_memory=1024,
do_sample=False,
prompt_type='0',
**kwargs,
):
history = [] if history is None else history
data_point = {}
if prompt_type == 'instruct':
PROMPT = prompt.instruct_prompt(tokenizer,max_memory)
elif prompt_type == 'chat':
PROMPT = prompt.chat_prompt(tokenizer,max_memory)
else:
raise Exception('not support')
data_point['history'] = copy.deepcopy(history)
data_point['input'] = inputs
input_ids = PROMPT.preprocess_gen(data_point)
printf('------------------------------')
printf(tokenizer.decode(input_ids))
input_ids = torch.tensor([input_ids]).to(device) # batch=1
printf('------------------------------')
printf('shape',input_ids.size())
printf('------------------------------')
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence
min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence
do_sample=do_sample,
bad_words_ids=tokenizer(['\n\nUser:','\n\nAssistant:'], add_special_tokens=False).input_ids,
**kwargs,
)
return_text = [(item['input'], item['output']) for item in history]
out_memory =False
outputs = None
with torch.no_grad():
# 流式输出 / 打字机效果
# streamly output / typewriter style
if args.use_typewriter:
try:
for generation_output in model.stream_generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=float(repetition_penalty),
):
gen_token = generation_output[0][-1].item()
printf(gen_token, end='(')
printf(tokenizer.decode(gen_token), end=') ')
outputs = tokenizer.batch_decode(generation_output)
if args.show_beam:
show_text = "\n--------------------------------------------\n".join(
[ PROMPT.postprocess(output)+" ▌" for output in outputs]
)
else:
show_text = PROMPT.postprocess(outputs[0])+" ▌"
yield return_text +[(inputs, show_text)], history
except torch.cuda.OutOfMemoryError:
print('CUDA out of memory')
import gc
gc.collect()
torch.cuda.empty_cache()
out_memory=True
# finally only one
printf('[EOS]', end='\n')
show_text = PROMPT.postprocess(outputs[0] if outputs is not None else '### Response:')
return_len = len(show_text)
if out_memory==True:
out_memory=False
show_text+= '<p style="color:#FF0000"> [GPU Out Of Memory] </p> '
if return_len > 0:
output = PROMPT.postprocess(outputs[0], render=False)
history.append({
'input': inputs,
'output': output,
})
return_text += [(inputs, show_text)]
yield return_text, history
# common
else:
try:
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
output = PROMPT.postprocess(output)
history.append({
'input': inputs,
'output': output,
})
return_text += [(inputs, output)]
yield return_text, history
except torch.cuda.OutOfMemoryError:
import gc
gc.collect()
torch.cuda.empty_cache()
show_text = '<p style="color:#FF0000"> [GPU Out Of Memory] </p> '
printf(show_text)
return_text += [(inputs, show_text)]
yield return_text, history
def clear():
import gc
gc.collect()
torch.cuda.empty_cache()
return None, None
# gr.Interface对chatbot的clear有bug,因此我们重新实现了一个基于gr.block的UI逻辑
# gr.Interface has bugs to clear chatbot's history,so we customly implement it based on gr.block
with gr.Blocks() as demo:
fn = evaluate
title = gr.Markdown(
"<h1 style='text-align: center; margin-bottom: 1rem'>"
+ "Chinese-Vicuna 中文小羊驼"
+ "</h1>"
)
description = gr.Markdown(
"中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。"
)
history = gr.components.State()
with gr.Row().style(equal_height=False):
with gr.Column(variant="panel"):
input_component_column = gr.Column()
with input_component_column:
input = gr.components.Textbox(
lines=2, label="Input", placeholder="请输入问题."
)
temperature = gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature")
topp = gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p")
topk = gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k")
beam_number = gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number")
max_new_token = gr.components.Slider(
minimum=1, maximum=2048, step=1, value=256, label="Max New Tokens"
)
min_new_token = gr.components.Slider(
minimum=1, maximum=1024, step=1, value=5, label="Min New Tokens"
)
repeat_penal = gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
)
max_memory = gr.components.Slider(
minimum=0, maximum=2048, step=1, value=2048, label="Max Memory"
)
do_sample = gr.components.Checkbox(label="Use sample")
# must be str, not number !
type_of_prompt = gr.components.Dropdown(
['instruct', 'chat'], value=args.prompt_type, label="Prompt Type", info="select the specific prompt; use after clear history"
)
input_components = [
input, history, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt
]
input_components_except_states = [input, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt]
with gr.Row():
cancel_btn = gr.Button('Cancel')
submit_btn = gr.Button("Submit", variant="primary")
stop_btn = gr.Button("Stop", variant="stop", visible=False)
with gr.Row():
reset_btn = gr.Button("Reset Parameter")
clear_history = gr.Button("Clear History")
with gr.Column(variant="panel"):
chatbot = gr.Chatbot().style(height=1024)
output_components = [ chatbot, history ]
with gr.Row():
save_btn = gr.Button("Save Chat")
def wrapper(*args):
# here to support the change between the stop and submit button
try:
for output in fn(*args):
output = [o for o in output]
# output for output_components, the rest for [button, button]
yield output + [
gr.Button.update(visible=False),
gr.Button.update(visible=True),
]
finally:
yield [{'__type__': 'generic_update'}, {'__type__': 'generic_update'}] + [ gr.Button.update(visible=True), gr.Button.update(visible=False)]
def cancel(history, chatbot):
if history == []:
return (None, None)
return history[:-1], chatbot[:-1]
extra_output = [submit_btn, stop_btn]
save_btn.click(
save,
input_components,
None,
)
pred = submit_btn.click(
wrapper,
input_components,
output_components + extra_output,
api_name="predict",
scroll_to_output=True,
preprocess=True,
postprocess=True,
batch=False,
max_batch_size=4,
)
submit_btn.click(
lambda: (
submit_btn.update(visible=False),
stop_btn.update(visible=True),
),
inputs=None,
outputs=[submit_btn, stop_btn],
queue=False,
)
stop_btn.click(
lambda: (
submit_btn.update(visible=True),
stop_btn.update(visible=False),
),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[pred],
queue=False,
)
cancel_btn.click(
cancel,
inputs=[history, chatbot],
outputs=[history, chatbot]
)
reset_btn.click(
None,
[],
(
# input_components ; don't work for history...
input_components_except_states
+ [input_component_column]
), # type: ignore
_js=f"""() => {json.dumps([
getattr(component, "cleared_value", None) for component in input_components_except_states ]
+ ([gr.Column.update(visible=True)])
+ ([])
)}
""",
)
clear_history.click(clear, None, [history, chatbot], queue=False)
demo.queue().launch(share=args.share_link) |