import os from dotenv import load_dotenv from pathlib import Path # env_path = Path(__file__).resolve().parent.parent / '.env' # load_dotenv(dotenv_path=env_path, override=True) load_dotenv(override=True) class Config: API_KEY = os.getenv('OPENAI_API_KEY') MODEL_ID = os.getenv('MODEL_ID') MODEL_BASENAME = os.getenv('MODEL_BASENAME') COLLECTION_NAME = os.getenv('COLLECTION_NAME') PERSIST_DIRECTORY = os.path.join(os.path.dirname(__file__),'vector_store') os.makedirs(PERSIST_DIRECTORY, exist_ok=True) UPLOAD_DIR = os.path.join(os.path.dirname(__file__),'uploads') # os.makedirs(UPLOAD_DIR, exist_ok=True) LOG_DIR = os.path.join(os.path.dirname(__file__),'log_dir') # os.makedirs(LOG_DIR, exist_ok=True) MODELS_PATH = os.path.join(os.path.dirname(__file__),'models') CACHE_DIR = os.path.join(os.path.dirname(__file__),'models') # os.makedirs(CACHE_DIR, exist_ok=True) # MODELS_PATH = '/models' MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" MODEL_KWARGS = {'device': 'cpu'} ENCODE_KWARGS = {'normalize_embeddings': False} CHUNK_SIZE = 1024 CHUNK_OVERLAP = 200