Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,23 @@ nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-ba
|
|
8 |
if False:
|
9 |
gr.load("models/answerdotai/ModernBERT-base").launch()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def process_input(text_input, labels_or_premise, mode):
|
12 |
if mode == "Zero-Shot Classification":
|
13 |
labels = [label.strip() for label in labels_or_premise.split(',')]
|
@@ -16,7 +33,6 @@ def process_input(text_input, labels_or_premise, mode):
|
|
16 |
return results, ''
|
17 |
else: # NLI mode
|
18 |
prediction = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}])[0]
|
19 |
-
# Force showing all three labels
|
20 |
results = {
|
21 |
"entailment": prediction.get("score", 0) if prediction.get("label") == "entailment" else 0,
|
22 |
"contradiction": prediction.get("score", 0) if prediction.get("label") == "contradiction" else 0,
|
@@ -26,13 +42,33 @@ def process_input(text_input, labels_or_premise, mode):
|
|
26 |
|
27 |
def update_interface(mode):
|
28 |
if mode == "Zero-Shot Classification":
|
29 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
else:
|
31 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
with gr.Blocks() as demo:
|
34 |
-
gr.Markdown("
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
mode = gr.Radio(
|
37 |
["Zero-Shot Classification", "Natural Language Inference"],
|
38 |
label="Select Mode",
|
@@ -43,13 +79,15 @@ with gr.Blocks() as demo:
|
|
43 |
text_input = gr.Textbox(
|
44 |
label="✍️ Input Text",
|
45 |
placeholder="Enter your text...",
|
46 |
-
lines=3
|
|
|
47 |
)
|
48 |
|
49 |
labels_or_premise = gr.Textbox(
|
50 |
label="🏷️ Categories",
|
51 |
placeholder="Enter comma-separated categories...",
|
52 |
-
lines=2
|
|
|
53 |
)
|
54 |
|
55 |
submit_btn = gr.Button("Submit")
|
@@ -61,26 +99,14 @@ with gr.Blocks() as demo:
|
|
61 |
|
62 |
with gr.Column(variant="panel") as zero_shot_examples_panel:
|
63 |
gr.Examples(
|
64 |
-
examples=
|
65 |
-
["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
|
66 |
-
["The sun is very bright today", "weather, astronomy, complaints, poetry"],
|
67 |
-
["I love playing video games", "entertainment, sports, education, business"],
|
68 |
-
["The car won't start", "transportation, art, cooking, literature"],
|
69 |
-
["She wrote a beautiful poem", "creativity, finance, exercise, technology"]
|
70 |
-
],
|
71 |
inputs=[text_input, labels_or_premise],
|
72 |
label="Zero-Shot Classification Examples"
|
73 |
)
|
74 |
|
75 |
with gr.Column(variant="panel") as nli_examples_panel:
|
76 |
gr.Examples(
|
77 |
-
examples=
|
78 |
-
["A man is sleeping on a couch", "The man is awake"],
|
79 |
-
["The restaurant is full of people", "The place is empty"],
|
80 |
-
["The child is playing with toys", "The kid is having fun"],
|
81 |
-
["It's raining outside", "The weather is wet"],
|
82 |
-
["The dog is barking at the mailman", "There is a cat"]
|
83 |
-
],
|
84 |
inputs=[text_input, labels_or_premise],
|
85 |
label="Natural Language Inference Examples"
|
86 |
)
|
@@ -94,7 +120,7 @@ with gr.Blocks() as demo:
|
|
94 |
mode.change(
|
95 |
fn=update_interface,
|
96 |
inputs=[mode],
|
97 |
-
outputs=[labels_or_premise]
|
98 |
)
|
99 |
|
100 |
mode.change(
|
|
|
8 |
if False:
|
9 |
gr.load("models/answerdotai/ModernBERT-base").launch()
|
10 |
|
11 |
+
# Define examples
|
12 |
+
zero_shot_examples = [
|
13 |
+
["I absolutely love this product, it's amazing!", "positive, negative, neutral, angry"],
|
14 |
+
["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
|
15 |
+
["The sun is very bright today", "weather, astronomy, complaints, poetry"],
|
16 |
+
["I love playing video games", "entertainment, sports, education, business"],
|
17 |
+
["The car won't start", "transportation, art, cooking, literature"]
|
18 |
+
]
|
19 |
+
|
20 |
+
nli_examples = [
|
21 |
+
["A man is sleeping on a couch", "The man is awake"],
|
22 |
+
["The restaurant is full of people", "The place is empty"],
|
23 |
+
["The child is playing with toys", "The kid is having fun"],
|
24 |
+
["It's raining outside", "The weather is wet"],
|
25 |
+
["The dog is barking at the mailman", "There is a cat"]
|
26 |
+
]
|
27 |
+
|
28 |
def process_input(text_input, labels_or_premise, mode):
|
29 |
if mode == "Zero-Shot Classification":
|
30 |
labels = [label.strip() for label in labels_or_premise.split(',')]
|
|
|
33 |
return results, ''
|
34 |
else: # NLI mode
|
35 |
prediction = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}])[0]
|
|
|
36 |
results = {
|
37 |
"entailment": prediction.get("score", 0) if prediction.get("label") == "entailment" else 0,
|
38 |
"contradiction": prediction.get("score", 0) if prediction.get("label") == "contradiction" else 0,
|
|
|
42 |
|
43 |
def update_interface(mode):
|
44 |
if mode == "Zero-Shot Classification":
|
45 |
+
return (
|
46 |
+
gr.update(
|
47 |
+
label="🏷️ Categories",
|
48 |
+
placeholder="Enter comma-separated categories...",
|
49 |
+
value=zero_shot_examples[0][1]
|
50 |
+
),
|
51 |
+
gr.update(value=zero_shot_examples[0][0])
|
52 |
+
)
|
53 |
else:
|
54 |
+
return (
|
55 |
+
gr.update(
|
56 |
+
label="🔎 Hypothesis",
|
57 |
+
placeholder="Enter a hypothesis to compare with the premise...",
|
58 |
+
value=nli_examples[0][1]
|
59 |
+
),
|
60 |
+
gr.update(value=nli_examples[0][0])
|
61 |
+
)
|
62 |
|
63 |
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("""
|
65 |
+
# 🤖 ModernBERT Text Analysis, fine-tuned from Answer.ai
|
66 |
|
67 |
+
Using [tasksource/ModernBERT-base-nli](https://huggingface.co/tasksource/ModernBERT-base-nli),
|
68 |
+
fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
|
69 |
+
on large scale tasksource classification tasks. The tuned model achieves high accuracy on reasoning and long-context NLI, outperforming Llama 3 8B on ConTRoL and FOLIO.
|
70 |
+
""")
|
71 |
+
|
72 |
mode = gr.Radio(
|
73 |
["Zero-Shot Classification", "Natural Language Inference"],
|
74 |
label="Select Mode",
|
|
|
79 |
text_input = gr.Textbox(
|
80 |
label="✍️ Input Text",
|
81 |
placeholder="Enter your text...",
|
82 |
+
lines=3,
|
83 |
+
value=zero_shot_examples[0][0] # Initial value
|
84 |
)
|
85 |
|
86 |
labels_or_premise = gr.Textbox(
|
87 |
label="🏷️ Categories",
|
88 |
placeholder="Enter comma-separated categories...",
|
89 |
+
lines=2,
|
90 |
+
value=zero_shot_examples[0][1] # Initial value
|
91 |
)
|
92 |
|
93 |
submit_btn = gr.Button("Submit")
|
|
|
99 |
|
100 |
with gr.Column(variant="panel") as zero_shot_examples_panel:
|
101 |
gr.Examples(
|
102 |
+
examples=zero_shot_examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
inputs=[text_input, labels_or_premise],
|
104 |
label="Zero-Shot Classification Examples"
|
105 |
)
|
106 |
|
107 |
with gr.Column(variant="panel") as nli_examples_panel:
|
108 |
gr.Examples(
|
109 |
+
examples=nli_examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
inputs=[text_input, labels_or_premise],
|
111 |
label="Natural Language Inference Examples"
|
112 |
)
|
|
|
120 |
mode.change(
|
121 |
fn=update_interface,
|
122 |
inputs=[mode],
|
123 |
+
outputs=[labels_or_premise, text_input]
|
124 |
)
|
125 |
|
126 |
mode.change(
|