Spaces:
Sleeping
Sleeping
tarrasyed19472007
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
import PyPDF2
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
def load_pdf(uploaded_file):
|
7 |
reader = PyPDF2.PdfReader(uploaded_file)
|
8 |
-
text =
|
9 |
for page in reader.pages:
|
10 |
-
|
11 |
-
text += page.extract_text() + "\n"
|
12 |
return text
|
13 |
|
14 |
# Initialize RAG model
|
15 |
def initialize_rag_model():
|
16 |
-
# Load
|
17 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
18 |
-
|
19 |
-
# Use a dummy retriever for testing purposes
|
20 |
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
|
21 |
-
|
22 |
-
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
|
23 |
return tokenizer, retriever, model
|
24 |
|
25 |
-
#
|
26 |
-
def
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
36 |
-
return answer[0]
|
37 |
|
38 |
-
# Streamlit
|
39 |
-
st.title("PDF
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
text = load_pdf(uploaded_file)
|
44 |
-
st.write("PDF loaded successfully.
|
45 |
-
|
46 |
-
# Initialize
|
47 |
tokenizer, retriever, model = initialize_rag_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
user_query = st.text_input("Ask a question about the PDF:")
|
50 |
-
if user_query:
|
51 |
-
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
52 |
-
st.write(f"Answer: {answer}") # Display the answer
|
53 |
|
|
|
1 |
import streamlit as st
|
2 |
import PyPDF2
|
3 |
+
import os
|
4 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
5 |
+
import faiss
|
6 |
+
import torch
|
7 |
|
8 |
+
# Function to load PDF and extract text
|
9 |
def load_pdf(uploaded_file):
|
10 |
reader = PyPDF2.PdfReader(uploaded_file)
|
11 |
+
text = ''
|
12 |
for page in reader.pages:
|
13 |
+
text += page.extract_text()
|
|
|
14 |
return text
|
15 |
|
16 |
# Initialize RAG model
|
17 |
def initialize_rag_model():
|
18 |
+
# Load tokenizer, retriever, and model
|
19 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
|
|
|
|
20 |
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
|
21 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
|
|
22 |
return tokenizer, retriever, model
|
23 |
|
24 |
+
# Function to answer questions
|
25 |
+
def answer_question(question, context, tokenizer, model):
|
26 |
+
input_ids = tokenizer.encode(question, return_tensors='pt')
|
27 |
+
context_ids = tokenizer.encode(context, return_tensors='pt')
|
28 |
+
input_ids = input_ids.to(model.device)
|
29 |
+
context_ids = context_ids.to(model.device)
|
30 |
|
31 |
+
# Generate answer
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(input_ids=input_ids, context_input_ids=context_ids)
|
34 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
return answer
|
|
|
|
|
36 |
|
37 |
+
# Main Streamlit application
|
38 |
+
st.title("PDF Q&A Chatbot")
|
39 |
+
st.write("Upload a PDF file and ask questions about its content.")
|
40 |
|
41 |
+
# Upload PDF file
|
42 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
43 |
+
|
44 |
+
if uploaded_file:
|
45 |
text = load_pdf(uploaded_file)
|
46 |
+
st.write("PDF content loaded successfully.")
|
47 |
+
|
48 |
+
# Initialize model
|
49 |
tokenizer, retriever, model = initialize_rag_model()
|
50 |
+
|
51 |
+
# Get user question
|
52 |
+
question = st.text_input("Enter your question:")
|
53 |
+
|
54 |
+
if st.button("Get Answer"):
|
55 |
+
if text:
|
56 |
+
# Call the answer_question function
|
57 |
+
answer = answer_question(question, text, tokenizer, model)
|
58 |
+
st.write("Answer:", answer)
|
59 |
+
else:
|
60 |
+
st.error("No text found in the PDF.")
|
61 |
+
|
62 |
|
|
|
|
|
|
|
|
|
63 |
|