Ragpdfbot / app.py
tarrasyed19472007's picture
Update app.py
08d9dca verified
raw
history blame
1.87 kB
import streamlit as st
import PyPDF2
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
# Load PDF and extract text
def load_pdf(uploaded_file):
reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in reader.pages:
if page.extract_text(): # Ensure text extraction is valid
text += page.extract_text() + "\n"
return text
# Initialize RAG model
def initialize_rag_model():
# Load the tokenizer and model
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
# Use a dummy retriever for testing purposes
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
return tokenizer, retriever, model
# Process user query
def generate_answer(query, context, tokenizer, retriever, model):
# Tokenize the input question
inputs = tokenizer(query, return_tensors="pt")
# Prepare inputs for the model with a dummy context
inputs["context_input_ids"] = retriever(context, return_tensors="pt")["input_ids"]
# Generate the answer
outputs = model.generate(**inputs)
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return answer[0]
# Streamlit UI
st.title("PDF Question-Answer Chatbot")
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
text = load_pdf(uploaded_file)
st.write("PDF loaded successfully. You can now ask questions.")
# Initialize the RAG model
tokenizer, retriever, model = initialize_rag_model()
user_query = st.text_input("Ask a question about the PDF:")
if user_query:
answer = generate_answer(user_query, text, tokenizer, retriever, model)
st.write(f"Answer: {answer}") # Display the answer