Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
| import streamlit as st | |
| def generate_blog(title, model_name='gpt2', max_length=500): | |
| # Check if a GPU is available | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| st.write(f"Using device: {device}") | |
| # Load the tokenizer and model | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name).to(device) | |
| prompt = f"Write a blog post based on this Title: {title}" | |
| # Prepare the input | |
| input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) | |
| # Generate text | |
| output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True) | |
| # Decode the generated text | |
| blog_post = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return blog_post | |
| st.title("AI Blog Writer") | |
| st.write("Enter a blog title, and the AI will generate a blog post for you!") | |
| title = st.text_input("Enter the blog title:") | |
| if st.button("Generate Blog"): | |
| if title: | |
| with st.spinner("Generating blog post..."): | |
| blog_post = generate_blog(title) | |
| st.subheader("Generated Blog Post") | |
| st.write(blog_post) | |
| else: | |
| st.warning("Please enter a blog title.") | |