tanya17 commited on
Commit
ba4c03a
·
verified ·
1 Parent(s): b0a77e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -0
app.py CHANGED
@@ -67,6 +67,16 @@ def predict_lifecycle(category, product_name, price, rating, num_reviews, stock_
67
  prediction = product_model.predict(processed_input)[0]
68
  return f"Predicted Product Lifecycle: {round(prediction, 2)} years"
69
 
 
 
 
 
 
 
 
 
 
 
70
  def recommend_products(category):
71
  recommended = recommendation_knn.kneighbors([[category]], return_distance=False)
72
  return recommended.tolist()
 
67
  prediction = product_model.predict(processed_input)[0]
68
  return f"Predicted Product Lifecycle: {round(prediction, 2)} years"
69
 
70
+ def predict_price(product_name, category, base_price, competitor_price, demand, stock, reviews, rating, season, discount):
71
+ category = label_encoders["Category"].transform([category])[0]
72
+ demand = label_encoders["Demand"].transform([demand])[0]
73
+ season = label_encoders["Season"].transform([season])[0]
74
+ product_name = label_encoders["Product Name"].transform([product_name])[0]
75
+ features = np.array([base_price, competitor_price, stock, reviews, rating, discount]).reshape(1, -1)
76
+ scaled_features = scaler.transform(features)
77
+ final_features = np.concatenate((scaled_features.flatten(), [category, demand, season, product_name])).reshape(1, -1)
78
+ return f"Optimal Price: ₹{round(dynamic_pricing_model.predict(final_features)[0], 2)}"
79
+
80
  def recommend_products(category):
81
  recommended = recommendation_knn.kneighbors([[category]], return_distance=False)
82
  return recommended.tolist()