Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -67,6 +67,16 @@ def predict_lifecycle(category, product_name, price, rating, num_reviews, stock_
|
|
67 |
prediction = product_model.predict(processed_input)[0]
|
68 |
return f"Predicted Product Lifecycle: {round(prediction, 2)} years"
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def recommend_products(category):
|
71 |
recommended = recommendation_knn.kneighbors([[category]], return_distance=False)
|
72 |
return recommended.tolist()
|
|
|
67 |
prediction = product_model.predict(processed_input)[0]
|
68 |
return f"Predicted Product Lifecycle: {round(prediction, 2)} years"
|
69 |
|
70 |
+
def predict_price(product_name, category, base_price, competitor_price, demand, stock, reviews, rating, season, discount):
|
71 |
+
category = label_encoders["Category"].transform([category])[0]
|
72 |
+
demand = label_encoders["Demand"].transform([demand])[0]
|
73 |
+
season = label_encoders["Season"].transform([season])[0]
|
74 |
+
product_name = label_encoders["Product Name"].transform([product_name])[0]
|
75 |
+
features = np.array([base_price, competitor_price, stock, reviews, rating, discount]).reshape(1, -1)
|
76 |
+
scaled_features = scaler.transform(features)
|
77 |
+
final_features = np.concatenate((scaled_features.flatten(), [category, demand, season, product_name])).reshape(1, -1)
|
78 |
+
return f"Optimal Price: ₹{round(dynamic_pricing_model.predict(final_features)[0], 2)}"
|
79 |
+
|
80 |
def recommend_products(category):
|
81 |
recommended = recommendation_knn.kneighbors([[category]], return_distance=False)
|
82 |
return recommended.tolist()
|